A Discrete-Event Network Simulator
API
wifi-aggregation.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Sébastien Deronne
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Sébastien Deronne <sebastien.deronne@gmail.com>
18  */
19 
20 #include "ns3/boolean.h"
21 #include "ns3/command-line.h"
22 #include "ns3/config.h"
23 #include "ns3/internet-stack-helper.h"
24 #include "ns3/ipv4-address-helper.h"
25 #include "ns3/log.h"
26 #include "ns3/mobility-helper.h"
27 #include "ns3/packet-sink-helper.h"
28 #include "ns3/ssid.h"
29 #include "ns3/string.h"
30 #include "ns3/udp-client-server-helper.h"
31 #include "ns3/uinteger.h"
32 #include "ns3/wifi-mac.h"
33 #include "ns3/wifi-net-device.h"
34 #include "ns3/yans-wifi-channel.h"
35 #include "ns3/yans-wifi-helper.h"
36 
37 // This is an example that illustrates how 802.11n aggregation is configured.
38 // It defines 4 independent Wi-Fi networks (working on different channels).
39 // Each network contains one access point and one station. Each station
40 // continuously transmits data packets to its respective AP.
41 //
42 // Network topology (numbers in parentheses are channel numbers):
43 //
44 // Network A (36) Network B (40) Network C (44) Network D (48)
45 // * * * * * * * *
46 // | | | | | | | |
47 // AP A STA A AP B STA B AP C STA C AP D STA D
48 //
49 // The aggregation parameters are configured differently on the 4 stations:
50 // - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with
51 // maximum size of 65 kB);
52 // - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled);
53 // - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU;
54 // - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum
55 // size of 4 kB).
56 //
57 // Packets in this simulation belong to BestEffort Access Class (AC_BE).
58 //
59 // The user can select the distance between the stations and the APs and can enable/disable the
60 // RTS/CTS mechanism. Example: ./ns3 run "wifi-aggregation --distance=10 --enableRts=0
61 // --simulationTime=20"
62 //
63 // The output prints the throughput measured for the 4 cases/networks described above. When default
64 // aggregation parameters are enabled, the maximum A-MPDU size is 65 kB and the throughput is
65 // maximal. When aggregation is disabled, the throughput is about the half of the physical bitrate.
66 // When only A-MSDU is enabled, the throughput is increased but is not maximal, since the maximum
67 // A-MSDU size is limited to 7935 bytes (whereas the maximum A-MPDU size is limited to 65535 bytes).
68 // When A-MSDU and A-MPDU are both enabled (= two-level aggregation), the throughput is slightly
69 // smaller than the first scenario since we set a smaller maximum A-MPDU size.
70 //
71 // When the distance is increased, the frame error rate gets higher, and the output shows how it
72 // affects the throughput for the 4 networks. Even through A-MSDU has less overheads than A-MPDU,
73 // A-MSDU is less robust against transmission errors than A-MPDU. When the distance is augmented,
74 // the throughput for the third scenario is more affected than the throughput obtained in other
75 // networks.
76 
77 using namespace ns3;
78 
79 NS_LOG_COMPONENT_DEFINE("SimpleMpduAggregation");
80 
81 int
82 main(int argc, char* argv[])
83 {
84  uint32_t payloadSize = 1472; // bytes
85  double simulationTime = 10; // seconds
86  double distance = 5; // meters
87  bool enableRts = 0;
88  bool enablePcap = 0;
89  bool verifyResults = 0; // used for regression
90 
91  CommandLine cmd(__FILE__);
92  cmd.AddValue("payloadSize", "Payload size in bytes", payloadSize);
93  cmd.AddValue("enableRts", "Enable or disable RTS/CTS", enableRts);
94  cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
95  cmd.AddValue("distance",
96  "Distance in meters between the station and the access point",
97  distance);
98  cmd.AddValue("enablePcap", "Enable/disable pcap file generation", enablePcap);
99  cmd.AddValue("verifyResults",
100  "Enable/disable results verification at the end of the simulation",
101  verifyResults);
102  cmd.Parse(argc, argv);
103 
104  Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",
105  enableRts ? StringValue("0") : StringValue("999999"));
106 
108  wifiStaNodes.Create(4);
109  NodeContainer wifiApNodes;
110  wifiApNodes.Create(4);
111 
114  phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
115  phy.SetChannel(channel.Create());
116 
118  wifi.SetStandard(WIFI_STANDARD_80211n);
119  wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
120  "DataMode",
121  StringValue("HtMcs7"),
122  "ControlMode",
123  StringValue("HtMcs0"));
125 
126  NetDeviceContainer staDeviceA;
127  NetDeviceContainer staDeviceB;
128  NetDeviceContainer staDeviceC;
129  NetDeviceContainer staDeviceD;
130  NetDeviceContainer apDeviceA;
131  NetDeviceContainer apDeviceB;
132  NetDeviceContainer apDeviceC;
133  NetDeviceContainer apDeviceD;
134  Ssid ssid;
135 
136  // Network A
137  ssid = Ssid("network-A");
138  phy.Set("ChannelSettings", StringValue("{36, 0, BAND_5GHZ, 0}"));
139  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
140  staDeviceA = wifi.Install(phy, mac, wifiStaNodes.Get(0));
141 
142  mac.SetType("ns3::ApWifiMac",
143  "Ssid",
144  SsidValue(ssid),
145  "EnableBeaconJitter",
146  BooleanValue(false));
147  apDeviceA = wifi.Install(phy, mac, wifiApNodes.Get(0));
148 
149  // Network B
150  ssid = Ssid("network-B");
151  phy.Set("ChannelSettings", StringValue("{40, 0, BAND_5GHZ, 0}"));
152  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
153 
154  staDeviceB = wifi.Install(phy, mac, wifiStaNodes.Get(1));
155 
156  // Disable A-MPDU
157  Ptr<NetDevice> dev = wifiStaNodes.Get(1)->GetDevice(0);
158  Ptr<WifiNetDevice> wifi_dev = DynamicCast<WifiNetDevice>(dev);
159  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
160 
161  mac.SetType("ns3::ApWifiMac",
162  "Ssid",
163  SsidValue(ssid),
164  "EnableBeaconJitter",
165  BooleanValue(false));
166  apDeviceB = wifi.Install(phy, mac, wifiApNodes.Get(1));
167 
168  // Disable A-MPDU
169  dev = wifiApNodes.Get(1)->GetDevice(0);
170  wifi_dev = DynamicCast<WifiNetDevice>(dev);
171  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
172 
173  // Network C
174  ssid = Ssid("network-C");
175  phy.Set("ChannelSettings", StringValue("{44, 0, BAND_5GHZ, 0}"));
176  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
177 
178  staDeviceC = wifi.Install(phy, mac, wifiStaNodes.Get(2));
179 
180  // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
181  // bytes)
182  dev = wifiStaNodes.Get(2)->GetDevice(0);
183  wifi_dev = DynamicCast<WifiNetDevice>(dev);
184  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
185  wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
186 
187  mac.SetType("ns3::ApWifiMac",
188  "Ssid",
189  SsidValue(ssid),
190  "EnableBeaconJitter",
191  BooleanValue(false));
192  apDeviceC = wifi.Install(phy, mac, wifiApNodes.Get(2));
193 
194  // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
195  // bytes)
196  dev = wifiApNodes.Get(2)->GetDevice(0);
197  wifi_dev = DynamicCast<WifiNetDevice>(dev);
198  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
199  wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
200 
201  // Network D
202  ssid = Ssid("network-D");
203  phy.Set("ChannelSettings", StringValue("{48, 0, BAND_5GHZ, 0}"));
204  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
205 
206  staDeviceD = wifi.Install(phy, mac, wifiStaNodes.Get(3));
207 
208  // Enable A-MPDU with a smaller size than the default one and
209  // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
210  dev = wifiStaNodes.Get(3)->GetDevice(0);
211  wifi_dev = DynamicCast<WifiNetDevice>(dev);
212  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
213  wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
214 
215  mac.SetType("ns3::ApWifiMac",
216  "Ssid",
217  SsidValue(ssid),
218  "EnableBeaconJitter",
219  BooleanValue(false));
220  apDeviceD = wifi.Install(phy, mac, wifiApNodes.Get(3));
221 
222  // Enable A-MPDU with a smaller size than the default one and
223  // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
224  dev = wifiApNodes.Get(3)->GetDevice(0);
225  wifi_dev = DynamicCast<WifiNetDevice>(dev);
226  wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
227  wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
228 
229  // Setting mobility model
231  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
232  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
233 
234  // Set position for APs
235  positionAlloc->Add(Vector(0.0, 0.0, 0.0));
236  positionAlloc->Add(Vector(10.0, 0.0, 0.0));
237  positionAlloc->Add(Vector(20.0, 0.0, 0.0));
238  positionAlloc->Add(Vector(30.0, 0.0, 0.0));
239  // Set position for STAs
240  positionAlloc->Add(Vector(distance, 0.0, 0.0));
241  positionAlloc->Add(Vector(10 + distance, 0.0, 0.0));
242  positionAlloc->Add(Vector(20 + distance, 0.0, 0.0));
243  positionAlloc->Add(Vector(30 + distance, 0.0, 0.0));
244 
245  mobility.SetPositionAllocator(positionAlloc);
246  mobility.Install(wifiApNodes);
247  mobility.Install(wifiStaNodes);
248 
249  // Internet stack
251  stack.Install(wifiApNodes);
252  stack.Install(wifiStaNodes);
253 
255  address.SetBase("192.168.1.0", "255.255.255.0");
256  Ipv4InterfaceContainer StaInterfaceA;
257  StaInterfaceA = address.Assign(staDeviceA);
258  Ipv4InterfaceContainer ApInterfaceA;
259  ApInterfaceA = address.Assign(apDeviceA);
260 
261  address.SetBase("192.168.2.0", "255.255.255.0");
262  Ipv4InterfaceContainer StaInterfaceB;
263  StaInterfaceB = address.Assign(staDeviceB);
264  Ipv4InterfaceContainer ApInterfaceB;
265  ApInterfaceB = address.Assign(apDeviceB);
266 
267  address.SetBase("192.168.3.0", "255.255.255.0");
268  Ipv4InterfaceContainer StaInterfaceC;
269  StaInterfaceC = address.Assign(staDeviceC);
270  Ipv4InterfaceContainer ApInterfaceC;
271  ApInterfaceC = address.Assign(apDeviceC);
272 
273  address.SetBase("192.168.4.0", "255.255.255.0");
274  Ipv4InterfaceContainer StaInterfaceD;
275  StaInterfaceD = address.Assign(staDeviceD);
276  Ipv4InterfaceContainer ApInterfaceD;
277  ApInterfaceD = address.Assign(apDeviceD);
278 
279  // Setting applications
280  uint16_t port = 9;
281  UdpServerHelper serverA(port);
282  ApplicationContainer serverAppA = serverA.Install(wifiStaNodes.Get(0));
283  serverAppA.Start(Seconds(0.0));
284  serverAppA.Stop(Seconds(simulationTime + 1));
285 
286  UdpClientHelper clientA(StaInterfaceA.GetAddress(0), port);
287  clientA.SetAttribute("MaxPackets", UintegerValue(4294967295U));
288  clientA.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
289  clientA.SetAttribute("PacketSize", UintegerValue(payloadSize));
290 
291  ApplicationContainer clientAppA = clientA.Install(wifiApNodes.Get(0));
292  clientAppA.Start(Seconds(1.0));
293  clientAppA.Stop(Seconds(simulationTime + 1));
294 
295  UdpServerHelper serverB(port);
296  ApplicationContainer serverAppB = serverB.Install(wifiStaNodes.Get(1));
297  serverAppB.Start(Seconds(0.0));
298  serverAppB.Stop(Seconds(simulationTime + 1));
299 
300  UdpClientHelper clientB(StaInterfaceB.GetAddress(0), port);
301  clientB.SetAttribute("MaxPackets", UintegerValue(4294967295U));
302  clientB.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
303  clientB.SetAttribute("PacketSize", UintegerValue(payloadSize));
304 
305  ApplicationContainer clientAppB = clientB.Install(wifiApNodes.Get(1));
306  clientAppB.Start(Seconds(1.0));
307  clientAppB.Stop(Seconds(simulationTime + 1));
308 
309  UdpServerHelper serverC(port);
310  ApplicationContainer serverAppC = serverC.Install(wifiStaNodes.Get(2));
311  serverAppC.Start(Seconds(0.0));
312  serverAppC.Stop(Seconds(simulationTime + 1));
313 
314  UdpClientHelper clientC(StaInterfaceC.GetAddress(0), port);
315  clientC.SetAttribute("MaxPackets", UintegerValue(4294967295U));
316  clientC.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
317  clientC.SetAttribute("PacketSize", UintegerValue(payloadSize));
318 
319  ApplicationContainer clientAppC = clientC.Install(wifiApNodes.Get(2));
320  clientAppC.Start(Seconds(1.0));
321  clientAppC.Stop(Seconds(simulationTime + 1));
322 
323  UdpServerHelper serverD(port);
324  ApplicationContainer serverAppD = serverD.Install(wifiStaNodes.Get(3));
325  serverAppD.Start(Seconds(0.0));
326  serverAppD.Stop(Seconds(simulationTime + 1));
327 
328  UdpClientHelper clientD(StaInterfaceD.GetAddress(0), port);
329  clientD.SetAttribute("MaxPackets", UintegerValue(4294967295U));
330  clientD.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
331  clientD.SetAttribute("PacketSize", UintegerValue(payloadSize));
332 
333  ApplicationContainer clientAppD = clientD.Install(wifiApNodes.Get(3));
334  clientAppD.Start(Seconds(1.0));
335  clientAppD.Stop(Seconds(simulationTime + 1));
336 
337  if (enablePcap)
338  {
339  phy.EnablePcap("AP_A", apDeviceA.Get(0));
340  phy.EnablePcap("STA_A", staDeviceA.Get(0));
341  phy.EnablePcap("AP_B", apDeviceB.Get(0));
342  phy.EnablePcap("STA_B", staDeviceB.Get(0));
343  phy.EnablePcap("AP_C", apDeviceC.Get(0));
344  phy.EnablePcap("STA_C", staDeviceC.Get(0));
345  phy.EnablePcap("AP_D", apDeviceD.Get(0));
346  phy.EnablePcap("STA_D", staDeviceD.Get(0));
347  }
348 
349  Simulator::Stop(Seconds(simulationTime + 1));
350  Simulator::Run();
351 
352  // Show results
353  uint64_t totalPacketsThroughA = DynamicCast<UdpServer>(serverAppA.Get(0))->GetReceived();
354  uint64_t totalPacketsThroughB = DynamicCast<UdpServer>(serverAppB.Get(0))->GetReceived();
355  uint64_t totalPacketsThroughC = DynamicCast<UdpServer>(serverAppC.Get(0))->GetReceived();
356  uint64_t totalPacketsThroughD = DynamicCast<UdpServer>(serverAppD.Get(0))->GetReceived();
357 
359 
360  double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0);
361  std::cout << "Throughput with default configuration (A-MPDU aggregation enabled, 65kB): "
362  << throughput << " Mbit/s" << '\n';
363  if (verifyResults && (throughput < 59.0 || throughput > 60.0))
364  {
365  NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
366  exit(1);
367  }
368 
369  throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0);
370  std::cout << "Throughput with aggregation disabled: " << throughput << " Mbit/s" << '\n';
371  if (verifyResults && (throughput < 30 || throughput > 31))
372  {
373  NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
374  exit(1);
375  }
376 
377  throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0);
378  std::cout << "Throughput with A-MPDU disabled and A-MSDU enabled (8kB): " << throughput
379  << " Mbit/s" << '\n';
380  if (verifyResults && (throughput < 51 || throughput > 52))
381  {
382  NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
383  exit(1);
384  }
385 
386  throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0);
387  std::cout << "Throughput with A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << throughput
388  << " Mbit/s" << '\n';
389  if (verifyResults && (throughput < 58 || throughput > 59))
390  {
391  NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
392  exit(1);
393  }
394 
395  return 0;
396 }
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:152
void SetAttribute(std::string name, const AttributeValue &value)
Set a single attribute, raising fatal errors if unsuccessful.
Definition: object-base.cc:200
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:140
static void Run()
Run the simulation.
Definition: simulator.cc:176
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:184
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Hold variables of type string.
Definition: string.h:56
AttributeValue implementation for Time.
Definition: nstime.h:1423
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:325
create MAC layers for a ns3::WifiNetDevice.
Ptr< WifiMac > GetMac() const
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:179
manage and create wifi channel objects for the YANS model.
static YansWifiChannelHelper Default()
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition: dsdv-manet.cc:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:891
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
@ WIFI_STANDARD_80211n
address
Definition: first.py:40
stack
Definition: first.py:37
void(* Time)(Time oldValue, Time newValue)
TracedValue callback signature for Time.
Definition: nstime.h:848
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:33
ssid
Definition: third.py:86
channel
Definition: third.py:81
mac
Definition: third.py:85
wifi
Definition: third.py:88
mobility
Definition: third.py:96
wifiStaNodes
Definition: third.py:77
phy
Definition: third.py:82