A Discrete-Event Network Simulator
API
wifi-eht-network.cc
Go to the documentation of this file.
1 /* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2022
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Sebastien Deronne <sebastien.deronne@gmail.com>
19  */
20 
21 #include "ns3/boolean.h"
22 #include "ns3/command-line.h"
23 #include "ns3/config.h"
24 #include "ns3/double.h"
25 #include "ns3/eht-phy.h"
26 #include "ns3/enum.h"
27 #include "ns3/internet-stack-helper.h"
28 #include "ns3/ipv4-address-helper.h"
29 #include "ns3/ipv4-global-routing-helper.h"
30 #include "ns3/log.h"
31 #include "ns3/mobility-helper.h"
32 #include "ns3/multi-model-spectrum-channel.h"
33 #include "ns3/on-off-helper.h"
34 #include "ns3/packet-sink-helper.h"
35 #include "ns3/packet-sink.h"
36 #include "ns3/rng-seed-manager.h"
37 #include "ns3/spectrum-wifi-helper.h"
38 #include "ns3/ssid.h"
39 #include "ns3/string.h"
40 #include "ns3/udp-client-server-helper.h"
41 #include "ns3/uinteger.h"
42 #include "ns3/wifi-acknowledgment.h"
43 #include "ns3/yans-wifi-channel.h"
44 #include "ns3/yans-wifi-helper.h"
45 
46 #include <array>
47 #include <functional>
48 #include <numeric>
49 
50 // This is a simple example in order to show how to configure an IEEE 802.11be Wi-Fi network.
51 //
52 // It outputs the UDP or TCP goodput for every EHT MCS value, which depends on the MCS value (0 to
53 // 13), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns).
54 // The PHY bitrate is constant over all the simulation run. The user can also specify the distance
55 // between the access point and the station: the larger the distance the smaller the goodput.
56 //
57 // The simulation assumes a configurable number of stations in an infrastructure network:
58 //
59 // STA AP
60 // * *
61 // | |
62 // n1 n2
63 //
64 // Packets in this simulation belong to BestEffort Access Class (AC_BE).
65 // By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a
66 // Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA.
67 
68 using namespace ns3;
69 
70 NS_LOG_COMPONENT_DEFINE("eht-wifi-network");
71 
78 std::vector<uint64_t>
79 GetRxBytes(bool udp, const ApplicationContainer& serverApp, uint32_t payloadSize)
80 {
81  std::vector<uint64_t> rxBytes(serverApp.GetN(), 0);
82  if (udp)
83  {
84  for (uint32_t i = 0; i < serverApp.GetN(); i++)
85  {
86  rxBytes[i] = payloadSize * DynamicCast<UdpServer>(serverApp.Get(i))->GetReceived();
87  }
88  }
89  else
90  {
91  for (uint32_t i = 0; i < serverApp.GetN(); i++)
92  {
93  rxBytes[i] = DynamicCast<PacketSink>(serverApp.Get(i))->GetTotalRx();
94  }
95  }
96  return rxBytes;
97 };
98 
108 void
109 PrintIntermediateTput(std::vector<uint64_t>& rxBytes,
110  bool udp,
111  const ApplicationContainer& serverApp,
112  uint32_t payloadSize,
113  Time tputInterval,
114  double simulationTime)
115 {
116  auto newRxBytes = GetRxBytes(udp, serverApp, payloadSize);
117  Time now = Simulator::Now();
118 
119  std::cout << "[" << (now - tputInterval).As(Time::S) << " - " << now.As(Time::S)
120  << "] Per-STA Throughput (Mbit/s):";
121 
122  for (std::size_t i = 0; i < newRxBytes.size(); i++)
123  {
124  std::cout << "\t\t(" << i << ") "
125  << (newRxBytes[i] - rxBytes[i]) * 8. / tputInterval.GetMicroSeconds(); // Mbit/s
126  }
127  std::cout << std::endl;
128 
129  rxBytes.swap(newRxBytes);
130 
131  if (now < Seconds(simulationTime) - NanoSeconds(1))
132  {
133  Simulator::Schedule(Min(tputInterval, Seconds(simulationTime) - now - NanoSeconds(1)),
135  rxBytes,
136  udp,
137  serverApp,
138  payloadSize,
139  tputInterval,
140  simulationTime);
141  }
142 }
143 
144 int
145 main(int argc, char* argv[])
146 {
147  bool udp{true};
148  bool downlink{true};
149  bool useRts{false};
150  bool useExtendedBlockAck{false};
151  double simulationTime{10}; // seconds
152  double distance{1.0}; // meters
153  double frequency{5}; // whether the first link operates in the 2.4, 5 or 6 GHz
154  double frequency2{0}; // whether the second link operates in the 2.4, 5 or 6 GHz (0 means no
155  // second link exists)
156  double frequency3{
157  0}; // whether the third link operates in the 2.4, 5 or 6 GHz (0 means no third link exists)
158  std::size_t nStations{1};
159  std::string dlAckSeqType{"NO-OFDMA"};
160  bool enableUlOfdma{false};
161  bool enableBsrp{false};
162  int mcs{-1}; // -1 indicates an unset value
163  uint32_t payloadSize =
164  700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones
165  Time tputInterval{0}; // interval for detailed throughput measurement
166  double minExpectedThroughput{0};
167  double maxExpectedThroughput{0};
168  Time accessReqInterval{0};
169 
170  CommandLine cmd(__FILE__);
171  cmd.AddValue(
172  "frequency",
173  "Whether the first link operates in the 2.4, 5 or 6 GHz band (other values gets rejected)",
174  frequency);
175  cmd.AddValue(
176  "frequency2",
177  "Whether the second link operates in the 2.4, 5 or 6 GHz band (0 means the device has one "
178  "link, otherwise the band must be different than first link and third link)",
179  frequency2);
180  cmd.AddValue(
181  "frequency3",
182  "Whether the third link operates in the 2.4, 5 or 6 GHz band (0 means the device has up to "
183  "two links, otherwise the band must be different than first link and second link)",
184  frequency3);
185  cmd.AddValue("distance",
186  "Distance in meters between the station and the access point",
187  distance);
188  cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
189  cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
190  cmd.AddValue("downlink",
191  "Generate downlink flows if set to 1, uplink flows otherwise",
192  downlink);
193  cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
194  cmd.AddValue("useExtendedBlockAck", "Enable/disable use of extended BACK", useExtendedBlockAck);
195  cmd.AddValue("nStations", "Number of non-AP HE stations", nStations);
196  cmd.AddValue("dlAckType",
197  "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)",
198  dlAckSeqType);
199  cmd.AddValue("enableUlOfdma",
200  "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)",
201  enableUlOfdma);
202  cmd.AddValue("enableBsrp",
203  "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)",
204  enableBsrp);
205  cmd.AddValue(
206  "muSchedAccessReqInterval",
207  "Duration of the interval between two requests for channel access made by the MU scheduler",
208  accessReqInterval);
209  cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs);
210  cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize);
211  cmd.AddValue("tputInterval", "duration of intervals for throughput measurement", tputInterval);
212  cmd.AddValue("minExpectedThroughput",
213  "if set, simulation fails if the lowest throughput is below this value",
214  minExpectedThroughput);
215  cmd.AddValue("maxExpectedThroughput",
216  "if set, simulation fails if the highest throughput is above this value",
217  maxExpectedThroughput);
218  cmd.Parse(argc, argv);
219 
220  if (useRts)
221  {
222  Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
223  Config::SetDefault("ns3::WifiDefaultProtectionManager::EnableMuRts", BooleanValue(true));
224  }
225 
226  if (dlAckSeqType == "ACK-SU-FORMAT")
227  {
228  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
230  }
231  else if (dlAckSeqType == "MU-BAR")
232  {
233  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
235  }
236  else if (dlAckSeqType == "AGGR-MU-BAR")
237  {
238  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
240  }
241  else if (dlAckSeqType != "NO-OFDMA")
242  {
243  NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or "
244  "AGGR-MU-BAR)");
245  }
246 
247  double prevThroughput[12];
248  for (uint32_t l = 0; l < 12; l++)
249  {
250  prevThroughput[l] = 0;
251  }
252  std::cout << "MCS value"
253  << "\t\t"
254  << "Channel width"
255  << "\t\t"
256  << "GI"
257  << "\t\t\t"
258  << "Throughput" << '\n';
259  int minMcs = 0;
260  int maxMcs = 13;
261  if (mcs >= 0 && mcs <= 13)
262  {
263  minMcs = mcs;
264  maxMcs = mcs;
265  }
266  for (int mcs = minMcs; mcs <= maxMcs; mcs++)
267  {
268  uint8_t index = 0;
269  double previous = 0;
270  uint16_t maxChannelWidth =
271  (frequency != 2.4 && frequency2 != 2.4 && frequency3 != 2.4) ? 160 : 40;
272  for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz
273  {
274  for (int gi = 3200; gi >= 800;) // Nanoseconds
275  {
276  if (!udp)
277  {
278  Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
279  }
280 
282  wifiStaNodes.Create(nStations);
284  wifiApNode.Create(1);
285 
286  NetDeviceContainer apDevice;
290 
291  wifi.SetStandard(WIFI_STANDARD_80211be);
292  std::array<std::string, 3> channelStr;
293  uint8_t nLinks = 0;
294  std::string dataModeStr = "EhtMcs" + std::to_string(mcs);
295  std::string ctrlRateStr;
296  uint64_t nonHtRefRateMbps = EhtPhy::GetNonHtReferenceRate(mcs) / 1e6;
297 
298  if (frequency2 == frequency || frequency3 == frequency ||
299  (frequency3 != 0 && frequency3 == frequency2))
300  {
301  std::cout << "Frequency values must be unique!" << std::endl;
302  return 0;
303  }
304 
305  for (auto freq : {frequency, frequency2, frequency3})
306  {
307  if (nLinks > 0 && freq == 0)
308  {
309  break;
310  }
311  channelStr[nLinks] = "{0, " + std::to_string(channelWidth) + ", ";
312  if (freq == 6)
313  {
314  channelStr[nLinks] += "BAND_6GHZ, 0}";
315  Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
316  DoubleValue(48));
317  wifi.SetRemoteStationManager(nLinks,
318  "ns3::ConstantRateWifiManager",
319  "DataMode",
320  StringValue(dataModeStr),
321  "ControlMode",
322  StringValue(dataModeStr));
323  }
324  else if (freq == 5)
325  {
326  channelStr[nLinks] += "BAND_5GHZ, 0}";
327  ctrlRateStr = "OfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
328  wifi.SetRemoteStationManager(nLinks,
329  "ns3::ConstantRateWifiManager",
330  "DataMode",
331  StringValue(dataModeStr),
332  "ControlMode",
333  StringValue(ctrlRateStr));
334  }
335  else if (freq == 2.4)
336  {
337  channelStr[nLinks] += "BAND_2_4GHZ, 0}";
338  Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
339  DoubleValue(40));
340  ctrlRateStr = "ErpOfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
341  wifi.SetRemoteStationManager(nLinks,
342  "ns3::ConstantRateWifiManager",
343  "DataMode",
344  StringValue(dataModeStr),
345  "ControlMode",
346  StringValue(ctrlRateStr));
347  }
348  else
349  {
350  std::cout << "Wrong frequency value!" << std::endl;
351  return 0;
352  }
353  nLinks++;
354  }
355 
356  Ssid ssid = Ssid("ns3-80211be");
357 
358  /*
359  * SingleModelSpectrumChannel cannot be used with 802.11be because two
360  * spectrum models are required: one with 78.125 kHz bands for HE PPDUs
361  * and one with 312.5 kHz bands for, e.g., non-HT PPDUs (for more details,
362  * see issue #408 (CLOSED))
363  */
364  Ptr<MultiModelSpectrumChannel> spectrumChannel =
365  CreateObject<MultiModelSpectrumChannel>();
366 
368  CreateObject<LogDistancePropagationLossModel>();
369  spectrumChannel->AddPropagationLossModel(lossModel);
370 
371  SpectrumWifiPhyHelper phy(nLinks);
372  phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
373  phy.SetChannel(spectrumChannel);
374 
375  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
376  for (uint8_t linkId = 0; linkId < nLinks; linkId++)
377  {
378  phy.Set(linkId, "ChannelSettings", StringValue(channelStr[linkId]));
379  }
380  staDevices = wifi.Install(phy, mac, wifiStaNodes);
381 
382  if (dlAckSeqType != "NO-OFDMA")
383  {
384  mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler",
385  "EnableUlOfdma",
386  BooleanValue(enableUlOfdma),
387  "EnableBsrp",
388  BooleanValue(enableBsrp),
389  "AccessReqInterval",
390  TimeValue(accessReqInterval));
391  }
392  mac.SetType("ns3::ApWifiMac",
393  "EnableBeaconJitter",
394  BooleanValue(false),
395  "Ssid",
396  SsidValue(ssid));
397  apDevice = wifi.Install(phy, mac, wifiApNode);
398 
401  int64_t streamNumber = 100;
402  streamNumber += wifi.AssignStreams(apDevice, streamNumber);
403  streamNumber += wifi.AssignStreams(staDevices, streamNumber);
404 
405  // Set guard interval and MPDU buffer size
406  Config::Set(
407  "/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/HeConfiguration/GuardInterval",
408  TimeValue(NanoSeconds(gi)));
409  Config::Set(
410  "/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/HeConfiguration/MpduBufferSize",
411  UintegerValue(useExtendedBlockAck ? 256 : 64));
412 
413  // mobility.
415  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
416 
417  positionAlloc->Add(Vector(0.0, 0.0, 0.0));
418  positionAlloc->Add(Vector(distance, 0.0, 0.0));
419  mobility.SetPositionAllocator(positionAlloc);
420 
421  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
422 
423  mobility.Install(wifiApNode);
424  mobility.Install(wifiStaNodes);
425 
426  /* Internet stack*/
428  stack.Install(wifiApNode);
429  stack.Install(wifiStaNodes);
430 
432  address.SetBase("192.168.1.0", "255.255.255.0");
433  Ipv4InterfaceContainer staNodeInterfaces;
434  Ipv4InterfaceContainer apNodeInterface;
435 
436  staNodeInterfaces = address.Assign(staDevices);
437  apNodeInterface = address.Assign(apDevice);
438 
439  /* Setting applications */
440  ApplicationContainer serverApp;
441  auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode);
442  Ipv4InterfaceContainer serverInterfaces;
443  NodeContainer clientNodes;
444  for (std::size_t i = 0; i < nStations; i++)
445  {
446  serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i)
447  : apNodeInterface.Get(0));
448  clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i));
449  }
450 
451  if (udp)
452  {
453  // UDP flow
454  uint16_t port = 9;
455  UdpServerHelper server(port);
456  serverApp = server.Install(serverNodes.get());
457  serverApp.Start(Seconds(0.0));
458  serverApp.Stop(Seconds(simulationTime + 1));
459 
460  for (std::size_t i = 0; i < nStations; i++)
461  {
462  UdpClientHelper client(serverInterfaces.GetAddress(i), port);
463  client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
464  client.SetAttribute("Interval", TimeValue(Time("0.00001"))); // packets/s
465  client.SetAttribute("PacketSize", UintegerValue(payloadSize));
466  ApplicationContainer clientApp = client.Install(clientNodes.Get(i));
467  clientApp.Start(Seconds(1.0));
468  clientApp.Stop(Seconds(simulationTime + 1));
469  }
470  }
471  else
472  {
473  // TCP flow
474  uint16_t port = 50000;
476  PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
477  serverApp = packetSinkHelper.Install(serverNodes.get());
478  serverApp.Start(Seconds(0.0));
479  serverApp.Stop(Seconds(simulationTime + 1));
480 
481  for (std::size_t i = 0; i < nStations; i++)
482  {
483  OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
484  onoff.SetAttribute("OnTime",
485  StringValue("ns3::ConstantRandomVariable[Constant=1]"));
486  onoff.SetAttribute("OffTime",
487  StringValue("ns3::ConstantRandomVariable[Constant=0]"));
488  onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
489  onoff.SetAttribute("DataRate", DataRateValue(1000000000)); // bit/s
490  AddressValue remoteAddress(
491  InetSocketAddress(serverInterfaces.GetAddress(i), port));
492  onoff.SetAttribute("Remote", remoteAddress);
493  ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i));
494  clientApp.Start(Seconds(1.0));
495  clientApp.Stop(Seconds(simulationTime + 1));
496  }
497  }
498 
499  // cumulative number of bytes received by each server application
500  std::vector<uint64_t> cumulRxBytes(nStations, 0);
501 
502  if (tputInterval.IsStrictlyPositive())
503  {
504  Simulator::Schedule(Seconds(1) + tputInterval,
506  cumulRxBytes,
507  udp,
508  serverApp,
509  payloadSize,
510  tputInterval,
511  simulationTime + 1);
512  }
513 
515 
516  Simulator::Stop(Seconds(simulationTime + 1));
517  Simulator::Run();
518 
519  // When multiple stations are used, there are chances that association requests
520  // collide and hence the throughput may be lower than expected. Therefore, we relax
521  // the check that the throughput cannot decrease by introducing a scaling factor (or
522  // tolerance)
523  double tolerance = 0.10;
524  cumulRxBytes = GetRxBytes(udp, serverApp, payloadSize);
525  uint64_t rxBytes = std::accumulate(cumulRxBytes.cbegin(), cumulRxBytes.cend(), 0);
526  double throughput = (rxBytes * 8) / (simulationTime * 1000000.0); // Mbit/s
527 
529 
530  std::cout << mcs << "\t\t\t" << channelWidth << " MHz\t\t\t" << gi << " ns\t\t\t"
531  << throughput << " Mbit/s" << std::endl;
532 
533  // test first element
534  if (mcs == 0 && channelWidth == 20 && gi == 3200)
535  {
536  if (throughput * (1 + tolerance) < minExpectedThroughput)
537  {
538  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
539  exit(1);
540  }
541  }
542  // test last element
543  if (mcs == 11 && channelWidth == 160 && gi == 800)
544  {
545  if (maxExpectedThroughput > 0 &&
546  throughput > maxExpectedThroughput * (1 + tolerance))
547  {
548  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
549  exit(1);
550  }
551  }
552  // test previous throughput is smaller (for the same mcs)
553  if (throughput * (1 + tolerance) > previous)
554  {
555  previous = throughput;
556  }
557  else if (throughput > 0)
558  {
559  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
560  exit(1);
561  }
562  // test previous throughput is smaller (for the same channel width and GI)
563  if (throughput * (1 + tolerance) > prevThroughput[index])
564  {
565  prevThroughput[index] = throughput;
566  }
567  else if (throughput > 0)
568  {
569  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
570  exit(1);
571  }
572  index++;
573  gi /= 2;
574  }
575  channelWidth *= 2;
576  }
577  }
578  return 0;
579 }
a polymophic address class
Definition: address.h:100
AttributeValue implementation for Address.
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
uint32_t GetN() const
Get the number of Ptr<Application> stored in this container.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
AttributeValue implementation for DataRate.
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
static uint64_t GetNonHtReferenceRate(uint8_t mcsValue)
Calculate the rate in bps of the non-HT Reference Rate corresponding to the supplied HE MCS index.
Definition: eht-phy.cc:371
Hold variables of type enum.
Definition: enum.h:56
an Inet address class
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetAny()
static void PopulateRoutingTables()
Build a routing database and initialize the routing tables of the nodes in the simulation.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
std::pair< Ptr< Ipv4 >, uint32_t > Get(uint32_t i) const
Get the std::pair of an Ptr<Ipv4> and interface stored at the location specified by the index.
void Add(const Ipv4InterfaceContainer &other)
Concatenate the entries in the other container with ours.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
Definition: on-off-helper.h:44
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static void SetRun(uint64_t run)
Set the run number of simulation.
static void SetSeed(uint32_t seed)
Set the seed.
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:568
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:140
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
static void Run()
Run the simulation.
Definition: simulator.cc:176
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:184
Make it easy to create and manage PHY objects for the spectrum model.
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:417
@ S
second
Definition: nstime.h:116
int64_t GetMicroSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:412
AttributeValue implementation for Time.
Definition: nstime.h:1423
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:325
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:179
uint16_t port
Definition: dsdv-manet.cc:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:891
void Set(std::string path, const AttributeValue &value)
Definition: config.cc:877
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition: abort.h:49
int64x64_t Min(const int64x64_t &a, const int64x64_t &b)
Minimum.
Definition: int64x64.h:229
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1372
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
@ WIFI_STANDARD_80211be
address
Definition: first.py:40
stack
Definition: first.py:37
void(* Time)(Time oldValue, Time newValue)
TracedValue callback signature for Time.
Definition: nstime.h:848
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:33
staDevices
Definition: third.py:91
ssid
Definition: third.py:86
mac
Definition: third.py:85
wifi
Definition: third.py:88
wifiApNode
Definition: third.py:79
mobility
Definition: third.py:96
wifiStaNodes
Definition: third.py:77
phy
Definition: third.py:82
std::vector< uint64_t > GetRxBytes(bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize)
void PrintIntermediateTput(std::vector< uint64_t > &rxBytes, bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize, Time tputInterval, double simulationTime)
Print average throughput over an intermediate time interval.