A Discrete-Event Network Simulator
API
80211b.c
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2010 The Boeing Company
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Gary Pei <guangyu.pei@boeing.com>
19  */
20 
21 /*
22  * This program is used to generate plots found in the paper
23  * G. Pei and Tom Henderson, "Validation of ns-3 802.11b PHY model",
24  * available online at http://www.nsnam.org/~pei/80211b.pdf
25  *
26  * It can be compiled as a C program and relies on a library installation of
27  * the GNU Scientific Library (gsl). To compile:
28  * gcc 80211b.c -o 80211b -lm -lgsl -lgslcblas
29  *
30  * The executable output should be redirected into a text file 80211b.txt
31  * ./80211b > 80211b.txt
32  *
33  * Then gnuplot can load the associated plot file which references 80211b.txt:
34  * gnuplot 80211b.plt
35  */
36 
37 #include <gsl/gsl_cdf.h>
38 #include <gsl/gsl_integration.h>
39 #include <gsl/gsl_math.h>
40 #include <gsl/gsl_sf_bessel.h>
41 
42 #define min(a, b) ((a) < (b) ? (a) : (b))
43 #define max(a, b) ((a) > (b) ? (a) : (b))
44 #define WLAN_SIR_perfect 10.0 // if SIR > 10dB, perfect reception
45 #define WLAN_SIR_impossible 0.1 // if SIR < -10dB, impossible to receive
46 
58 typedef struct fn_parameter_t
59 {
60  double beta;
61  double n;
63 
64 double
65 QFunction(double x)
66 {
67  return 0.5 * erfc(x / sqrt(2.0));
68 }
69 
70 double
71 f(double x, void* params)
72 {
73  double beta = ((fn_parameters*)params)->beta;
74  double n = ((fn_parameters*)params)->n;
75  double f =
76  pow(2 * gsl_cdf_ugaussian_P(x + beta) - 1, n - 1) * exp(-x * x / 2.0) / sqrt(2.0 * M_PI);
77  return f;
78 }
79 
80 double
81 p_e2(double e2)
82 {
83  double sep;
84  double error;
86  params.beta = sqrt(2.0 * e2);
87  params.n = 8.0;
88  gsl_integration_workspace* w = gsl_integration_workspace_alloc(1000);
89  gsl_function F;
90  F.function = &f;
91  F.params = &params;
92  gsl_integration_qagiu(&F, -params.beta, 0, 1e-7, 1000, w, &sep, &error);
93  gsl_integration_workspace_free(w);
94  if (error == 0.0)
95  {
96  sep = 1.0;
97  }
98  return 1.0 - sep;
99 }
100 
101 double
102 p_e1(double e1)
103 {
104  return 1.0 - pow(1.0 - p_e2(e1 / 2.0), 2.0);
105 }
106 
107 double
108 DbToNoneDb(double x)
109 {
110  return pow(10.0, x / 10.0);
111 }
112 
113 double
114 NoneDbToDb(double x)
115 {
116  return 10.0 * log10(x);
117 }
118 
119 double
121 {
122  double pi = acos(-1.0);
123  return ((sqrt(2.0) + 1.0) / sqrt(8.0 * pi * sqrt(2.0))) * (1.0 / sqrt(x)) *
124  exp(-(2.0 - sqrt(2.0)) * x);
125 }
126 
127 double
129 {
130  double ber;
131  if (EcNc > WLAN_SIR_perfect)
132  {
133  ber = 0;
134  }
135  else if (EcNc < WLAN_SIR_impossible)
136  {
137  ber = 0.5;
138  }
139  else
140  {
141  ber = min(QFunction(sqrt(11.0 * EcNc)), 0.5);
142  }
143  return ber;
144 }
145 
146 double
148 {
149  double EbN0 = sinr * 22000000.0 / 1000000.0;
150  double ber = 0.5 * exp(-EbN0);
151  return ber;
152 }
153 
154 double
156 {
157  double ber;
158  if (EcNc > WLAN_SIR_perfect)
159  {
160  ber = 0;
161  }
162  else if (EcNc < WLAN_SIR_impossible)
163  {
164  ber = 0.5;
165  }
166  else
167  {
168  ber = min(QFunction(sqrt(5.5 * EcNc)), 0.5);
169  }
170  return ber;
171 }
172 
173 double
175 {
176  // 2 bits per symbol, 1 MSPS
177  double EbN0 = sinr * 22000000.0 / 1000000.0 / 2.0;
178  double ber = DQPSKFunction(EbN0);
179  return ber;
180 }
181 
182 double
184 {
185  double ber;
186  if (EcNc > WLAN_SIR_perfect)
187  {
188  ber = 0.0;
189  }
190  else if (EcNc < WLAN_SIR_impossible)
191  {
192  ber = 0.5;
193  }
194  else
195  {
196  double pew = 14.0 * QFunction(sqrt(EcNc * 8.0)) + QFunction(sqrt(EcNc * 16.0));
197  pew = min(pew, 0.99999);
198  ber = 8.0 / 15.0 * pew;
199  }
200  return ber;
201 }
202 
203 double
205 {
206  double ber;
207  if (EcNc > WLAN_SIR_perfect)
208  {
209  ber = 0.0;
210  }
211  else if (EcNc < WLAN_SIR_impossible)
212  {
213  ber = 0.5;
214  }
215  else
216  {
217  double pew = 24.0 * QFunction(sqrt(EcNc * 4.0)) + 16.0 * QFunction(sqrt(EcNc * 6.0)) +
218  174.0 * QFunction(sqrt(EcNc * 8.0)) + 16.0 * QFunction(sqrt(EcNc * 10.0)) +
219  24.0 * QFunction(sqrt(EcNc * 12.0)) + QFunction(sqrt(EcNc * 16.0));
220  pew = min(pew, 0.99999);
221  ber = 128.0 / 255.0 * pew;
222  }
223  return ber;
224 }
225 
226 int
227 main(int argc, char* argv[])
228 {
229  double rss, sinr;
230  double totalPkt = 200.0;
231  // double noise = 1.552058; // (dB) this noise figure value corresponds to
232  // -99 dBm noise floor reported in CMU paper
233  double noise = 7; // (dB) this noise figure value corresponds to the
234  // default in YansWifiPhy, and matches CMU testbed results
235  double EcNc, EbN01, EbN02, EbN05, EbN011;
236  double ieee1, ieee2, ieee5, ieee11;
237  double numBits = (1024. + 40. + 14.) * 8.;
238  double dbpsk, dqpsk, cck16, cck256, sepcck16, sepcck256;
239  noise = DbToNoneDb(noise) * 1.3803e-23 * 290.0 * 22000000;
240  for (rss = -102.0; rss <= -80.0; rss += 0.1)
241  {
242  sinr = DbToNoneDb(rss) / 1000.0 / noise;
243  EcNc = sinr * 22000000.0 / 11000000.0; // IEEE sir
244  EbN01 = sinr * 22000000.0 / 1000000.0;
245  // 2 bits per symbol, 1 MSPS
246  EbN02 = sinr * 22000000.0 / 1000000.0 / 2.0;
247  EbN05 = sinr * 22000000.0 / 1375000.0 / 4.0;
248  EbN011 = sinr * 22000000.0 / 1375000.0 / 8.0;
249  // 1=rss, 2=EcNc, 3=EbN01, 4=EbN02, 5=EBN05, 6=EbN011
250  printf("%g %g %g %g %g %g ",
251  rss,
252  NoneDbToDb(EcNc),
253  NoneDbToDb(EbN01),
254  NoneDbToDb(EbN02),
255  NoneDbToDb(EbN05),
256  NoneDbToDb(EbN011));
257  ieee1 = Get80211bDsssDbpskBerIeee(EcNc);
258  ieee2 = Get80211bDsssDqpskBerIeee(EcNc);
259  ieee5 = Get80211bDsssDqpskCCK5_5BerIeee(EcNc);
260  ieee11 = Get80211bDsssDqpskCCK11BerIeee(EcNc);
261  // 7=ber_ieee1, 8=ber_ieee2, 9=ber_ieee5, 10=ber_ieee11
262  printf(" %g %g %g %g ", ieee1, ieee2, ieee5, ieee11);
263  ieee1 = totalPkt * pow(1 - ieee1, numBits);
264  ieee2 = totalPkt * pow(1 - ieee2, numBits);
265  ieee5 = totalPkt * pow(1 - ieee5, numBits);
266  ieee11 = totalPkt * pow(1 - ieee11, numBits);
267  // 11=pkt_ieee1, 12=pkt_ieee2, 13=pkt_ieee5, 14=pkt_ieee11
268  printf(" %g %g %g %g ", ieee1, ieee2, ieee5, ieee11);
269  dbpsk = Get80211bDsssDbpskBer(sinr);
270  dqpsk = Get80211bDsssDqpskBer(sinr);
271  cck16 = max(0, 8.0 / 15.0 * p_e2(4.0 * EbN05 / 2.0));
272  cck256 = max(0, 128.0 / 255.0 * p_e1(8.0 * EbN011 / 2.0));
273  // 15=ber_dbpsk, 16=ber_dqpsk, 17=ber_cck16, 18=ber_cck256
274  printf(" %g %g %g %g ", dbpsk, dqpsk, cck16, cck256);
275  dbpsk = totalPkt * pow(1 - dbpsk, numBits);
276  dqpsk = totalPkt * pow(1 - dqpsk, numBits);
277  sepcck16 = p_e2(4.0 * EbN05 / 2.0);
278  sepcck256 = p_e1(8.0 * EbN011 / 2.0);
279  cck16 = totalPkt * pow(1.0 - sepcck16, numBits / 4.0);
280  cck256 = totalPkt * pow(1.0 - sepcck256, numBits / 8.0);
281  // 19=pkt_dbpsk, 20=pkt_dqpsk, 21=pkt_cck16, 22=pkt_cck256
282  printf(" %g %g %g %g ", dbpsk, dqpsk, cck16, cck256);
283  // 23=sinr
284  printf(" %g \n", NoneDbToDb(sinr));
285  }
286  return 0;
287 }
#define WLAN_SIR_perfect
Definition: 80211b.c:44
double p_e2(double e2)
Definition: 80211b.c:81
double Get80211bDsssDqpskCCK11BerIeee(double EcNc)
Definition: 80211b.c:204
#define WLAN_SIR_impossible
Definition: 80211b.c:45
double NoneDbToDb(double x)
Definition: 80211b.c:114
double Get80211bDsssDqpskCCK5_5BerIeee(double EcNc)
Definition: 80211b.c:183
double Get80211bDsssDbpskBerIeee(double EcNc)
Definition: 80211b.c:128
double p_e1(double e1)
Definition: 80211b.c:102
#define min(a, b)
Definition: 80211b.c:42
double DQPSKFunction(double x)
Definition: 80211b.c:120
double QFunction(double x)
Definition: 80211b.c:65
double Get80211bDsssDbpskBer(double sinr)
Definition: 80211b.c:147
double Get80211bDsssDqpskBerIeee(double EcNc)
Definition: 80211b.c:155
double f(double x, void *params)
Definition: 80211b.c:71
double Get80211bDsssDqpskBer(double sinr)
Definition: 80211b.c:174
double DbToNoneDb(double x)
Definition: 80211b.c:108
#define max(a, b)
Definition: 80211b.c:43
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
fn_parameter_t structure
Definition: 80211b.c:59
double beta
beta
Definition: 80211b.c:60
double n
n
Definition: 80211b.c:61