A Discrete-Event Network Simulator
API
lena-frequency-reuse.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014 Piotr Gawlowicz
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Piotr Gawlowicz <gawlowicz.p@gmail.com>
18  *
19  */
20 
21 #include "ns3/config-store.h"
22 #include "ns3/core-module.h"
23 #include "ns3/lte-module.h"
24 #include "ns3/mobility-module.h"
25 #include "ns3/network-module.h"
26 #include <ns3/buildings-helper.h>
27 #include <ns3/log.h>
28 #include <ns3/spectrum-module.h>
29 
30 using namespace ns3;
31 
32 NS_LOG_COMPONENT_DEFINE("LenaFrequencyReuse");
33 
34 void
35 PrintGnuplottableUeListToFile(std::string filename)
36 {
37  std::ofstream outFile;
38  outFile.open(filename, std::ios_base::out | std::ios_base::trunc);
39  if (!outFile.is_open())
40  {
41  NS_LOG_ERROR("Can't open file " << filename);
42  return;
43  }
44  for (NodeList::Iterator it = NodeList::Begin(); it != NodeList::End(); ++it)
45  {
46  Ptr<Node> node = *it;
47  int nDevs = node->GetNDevices();
48  for (int j = 0; j < nDevs; j++)
49  {
50  Ptr<LteUeNetDevice> uedev = node->GetDevice(j)->GetObject<LteUeNetDevice>();
51  if (uedev)
52  {
53  Vector pos = node->GetObject<MobilityModel>()->GetPosition();
54  outFile << "set label \"" << uedev->GetImsi() << "\" at " << pos.x << "," << pos.y
55  << " left font \"Helvetica,4\" textcolor rgb \"grey\" front point pt 1 ps "
56  "0.3 lc rgb \"grey\" offset 0,0"
57  << std::endl;
58  }
59  }
60  }
61 }
62 
63 void
64 PrintGnuplottableEnbListToFile(std::string filename)
65 {
66  std::ofstream outFile;
67  outFile.open(filename, std::ios_base::out | std::ios_base::trunc);
68  if (!outFile.is_open())
69  {
70  NS_LOG_ERROR("Can't open file " << filename);
71  return;
72  }
73  for (NodeList::Iterator it = NodeList::Begin(); it != NodeList::End(); ++it)
74  {
75  Ptr<Node> node = *it;
76  int nDevs = node->GetNDevices();
77  for (int j = 0; j < nDevs; j++)
78  {
79  Ptr<LteEnbNetDevice> enbdev = node->GetDevice(j)->GetObject<LteEnbNetDevice>();
80  if (enbdev)
81  {
82  Vector pos = node->GetObject<MobilityModel>()->GetPosition();
83  outFile << "set label \"" << enbdev->GetCellId() << "\" at " << pos.x << ","
84  << pos.y
85  << " left font \"Helvetica,4\" textcolor rgb \"white\" front point pt 2 "
86  "ps 0.3 lc rgb \"white\" offset 0,0"
87  << std::endl;
88  }
89  }
90  }
91 }
92 
93 int
94 main(int argc, char* argv[])
95 {
96  Config::SetDefault("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue(true));
97  Config::SetDefault("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue(true));
98  Config::SetDefault("ns3::LteHelper::UseIdealRrc", BooleanValue(true));
99  Config::SetDefault("ns3::LteHelper::UsePdschForCqiGeneration", BooleanValue(true));
100 
101  // Uplink Power Control
102  Config::SetDefault("ns3::LteUePhy::EnableUplinkPowerControl", BooleanValue(true));
103  Config::SetDefault("ns3::LteUePowerControl::ClosedLoop", BooleanValue(true));
104  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
105 
106  uint32_t runId = 3;
107  uint16_t numberOfRandomUes = 0;
108  double simTime = 2.500;
109  bool generateSpectrumTrace = false;
110  bool generateRem = false;
111  int32_t remRbId = -1;
112  uint16_t bandwidth = 25;
113  double distance = 1000;
114  Box macroUeBox =
115  Box(-distance * 0.5, distance * 1.5, -distance * 0.5, distance * 1.5, 1.5, 1.5);
116 
117  // Command line arguments
118  CommandLine cmd(__FILE__);
119  cmd.AddValue("numberOfUes", "Number of random UEs", numberOfRandomUes);
120  cmd.AddValue("simTime", "Total duration of the simulation (in seconds)", simTime);
121  cmd.AddValue("generateSpectrumTrace",
122  "if true, will generate a Spectrum Analyzer trace",
123  generateSpectrumTrace);
124  cmd.AddValue("generateRem",
125  "if true, will generate a REM and then abort the simulation",
126  generateRem);
127  cmd.AddValue("remRbId",
128  "Resource Block Id, for which REM will be generated,"
129  "default value is -1, what means REM will be averaged from all RBs",
130  remRbId);
131  cmd.AddValue("runId", "runId", runId);
132  cmd.Parse(argc, argv);
133 
135  RngSeedManager::SetRun(runId);
136 
137  Ptr<LteHelper> lteHelper = CreateObject<LteHelper>();
138 
139  // Create Nodes: eNodeB and UE
140  NodeContainer enbNodes;
141  NodeContainer centerUeNodes;
142  NodeContainer edgeUeNodes;
143  NodeContainer randomUeNodes;
144  enbNodes.Create(3);
145  centerUeNodes.Create(3);
146  edgeUeNodes.Create(3);
147  randomUeNodes.Create(numberOfRandomUes);
148 
149  /* the topology is the following:
150  * eNB3
151  * / \
152  * / \
153  * / \
154  * / \
155  * distance / \ distance
156  * / UEs \
157  * / \
158  * / \
159  * / \
160  * / \
161  * eNB1-------------------------eNB2
162  * distance
163  */
164 
165  // Install Mobility Model
166  Ptr<ListPositionAllocator> enbPositionAlloc = CreateObject<ListPositionAllocator>();
167  enbPositionAlloc->Add(Vector(0.0, 0.0, 0.0)); // eNB1
168  enbPositionAlloc->Add(Vector(distance, 0.0, 0.0)); // eNB2
169  enbPositionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // eNB3
171  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
172  mobility.SetPositionAllocator(enbPositionAlloc);
173  mobility.Install(enbNodes);
174 
175  Ptr<ListPositionAllocator> edgeUePositionAlloc = CreateObject<ListPositionAllocator>();
176  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE1
177  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE2
178  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE3
179  mobility.SetPositionAllocator(edgeUePositionAlloc);
180  mobility.Install(edgeUeNodes);
181 
182  Ptr<ListPositionAllocator> centerUePositionAlloc = CreateObject<ListPositionAllocator>();
183  centerUePositionAlloc->Add(Vector(0.0, 0.0, 0.0)); // centerUE1
184  centerUePositionAlloc->Add(Vector(distance, 0.0, 0.0)); // centerUE2
185  centerUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // centerUE3
186  mobility.SetPositionAllocator(centerUePositionAlloc);
187  mobility.Install(centerUeNodes);
188 
189  Ptr<RandomBoxPositionAllocator> randomUePositionAlloc =
190  CreateObject<RandomBoxPositionAllocator>();
191  Ptr<UniformRandomVariable> xVal = CreateObject<UniformRandomVariable>();
192  xVal->SetAttribute("Min", DoubleValue(macroUeBox.xMin));
193  xVal->SetAttribute("Max", DoubleValue(macroUeBox.xMax));
194  randomUePositionAlloc->SetAttribute("X", PointerValue(xVal));
195  Ptr<UniformRandomVariable> yVal = CreateObject<UniformRandomVariable>();
196  yVal->SetAttribute("Min", DoubleValue(macroUeBox.yMin));
197  yVal->SetAttribute("Max", DoubleValue(macroUeBox.yMax));
198  randomUePositionAlloc->SetAttribute("Y", PointerValue(yVal));
199  Ptr<UniformRandomVariable> zVal = CreateObject<UniformRandomVariable>();
200  zVal->SetAttribute("Min", DoubleValue(macroUeBox.zMin));
201  zVal->SetAttribute("Max", DoubleValue(macroUeBox.zMax));
202  randomUePositionAlloc->SetAttribute("Z", PointerValue(zVal));
203  mobility.SetPositionAllocator(randomUePositionAlloc);
204  mobility.Install(randomUeNodes);
205 
206  // Create Devices and install them in the Nodes (eNB and UE)
207  NetDeviceContainer enbDevs;
208  NetDeviceContainer edgeUeDevs;
209  NetDeviceContainer centerUeDevs;
210  NetDeviceContainer randomUeDevs;
211  lteHelper->SetSchedulerType("ns3::PfFfMacScheduler");
213  lteHelper->SetEnbDeviceAttribute("DlBandwidth", UintegerValue(bandwidth));
214  lteHelper->SetEnbDeviceAttribute("UlBandwidth", UintegerValue(bandwidth));
215 
216  std::string frAlgorithmType = lteHelper->GetFfrAlgorithmType();
217  NS_LOG_DEBUG("FrAlgorithmType: " << frAlgorithmType);
218 
219  if (frAlgorithmType == "ns3::LteFrHardAlgorithm")
220  {
221  // Nothing to configure here in automatic mode
222  }
223  else if (frAlgorithmType == "ns3::LteFrStrictAlgorithm")
224  {
225  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(32));
226  lteHelper->SetFfrAlgorithmAttribute("CenterPowerOffset",
228  lteHelper->SetFfrAlgorithmAttribute("EdgePowerOffset",
230  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
231  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
232 
233  // ns3::LteFrStrictAlgorithm works with Absolute Mode Uplink Power Control
234  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
235  }
236  else if (frAlgorithmType == "ns3::LteFrSoftAlgorithm")
237  {
238  lteHelper->SetFfrAlgorithmAttribute("AllowCenterUeUseEdgeSubBand", BooleanValue(true));
239  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(25));
240  lteHelper->SetFfrAlgorithmAttribute("CenterPowerOffset",
242  lteHelper->SetFfrAlgorithmAttribute("EdgePowerOffset",
244  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
245  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
246 
247  // ns3::LteFrSoftAlgorithm works with Absolute Mode Uplink Power Control
248  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
249  }
250  else if (frAlgorithmType == "ns3::LteFfrSoftAlgorithm")
251  {
252  lteHelper->SetFfrAlgorithmAttribute("CenterRsrqThreshold", UintegerValue(30));
253  lteHelper->SetFfrAlgorithmAttribute("EdgeRsrqThreshold", UintegerValue(25));
254  lteHelper->SetFfrAlgorithmAttribute("CenterAreaPowerOffset",
256  lteHelper->SetFfrAlgorithmAttribute(
257  "MediumAreaPowerOffset",
259  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaPowerOffset",
261  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(1));
262  lteHelper->SetFfrAlgorithmAttribute("MediumAreaTpc", UintegerValue(2));
263  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
264 
265  // ns3::LteFfrSoftAlgorithm works with Absolute Mode Uplink Power Control
266  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
267  }
268  else if (frAlgorithmType == "ns3::LteFfrEnhancedAlgorithm")
269  {
270  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(25));
271  lteHelper->SetFfrAlgorithmAttribute("DlCqiThreshold", UintegerValue(10));
272  lteHelper->SetFfrAlgorithmAttribute("UlCqiThreshold", UintegerValue(10));
273  lteHelper->SetFfrAlgorithmAttribute("CenterAreaPowerOffset",
275  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaPowerOffset",
277  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
278  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
279 
280  // ns3::LteFfrEnhancedAlgorithm works with Absolute Mode Uplink Power Control
281  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
282  }
283  else if (frAlgorithmType == "ns3::LteFfrDistributedAlgorithm")
284  {
285  NS_FATAL_ERROR("ns3::LteFfrDistributedAlgorithm not supported in this example. Please run "
286  "lena-distributed-ffr");
287  }
288  else
289  {
290  lteHelper->SetFfrAlgorithmType("ns3::LteFrNoOpAlgorithm");
291  }
292 
293  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(1));
294  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(0)));
295 
296  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(2));
297  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(1)));
298 
299  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(3));
300  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(2)));
301 
302  // FR algorithm reconfiguration if needed
303  PointerValue tmp;
304  enbDevs.Get(0)->GetAttribute("LteFfrAlgorithm", tmp);
305  Ptr<LteFfrAlgorithm> ffrAlgorithm = DynamicCast<LteFfrAlgorithm>(tmp.GetObject());
306  ffrAlgorithm->SetAttribute("FrCellTypeId", UintegerValue(1));
307 
308  // Install Ue Device
309  edgeUeDevs = lteHelper->InstallUeDevice(edgeUeNodes);
310  centerUeDevs = lteHelper->InstallUeDevice(centerUeNodes);
311  randomUeDevs = lteHelper->InstallUeDevice(randomUeNodes);
312 
313  // Attach edge UEs to eNbs
314  for (uint32_t i = 0; i < edgeUeDevs.GetN(); i++)
315  {
316  lteHelper->Attach(edgeUeDevs.Get(i), enbDevs.Get(i));
317  }
318  // Attach center UEs to eNbs
319  for (uint32_t i = 0; i < centerUeDevs.GetN(); i++)
320  {
321  lteHelper->Attach(centerUeDevs.Get(i), enbDevs.Get(i));
322  }
323 
324  // Attach UE to a eNB
325  lteHelper->AttachToClosestEnb(randomUeDevs, enbDevs);
326 
327  // Activate a data radio bearer
329  EpsBearer bearer(q);
330  lteHelper->ActivateDataRadioBearer(edgeUeDevs, bearer);
331  lteHelper->ActivateDataRadioBearer(centerUeDevs, bearer);
332  lteHelper->ActivateDataRadioBearer(randomUeDevs, bearer);
333 
334  // Spectrum analyzer
335  NodeContainer spectrumAnalyzerNodes;
336  spectrumAnalyzerNodes.Create(1);
337  SpectrumAnalyzerHelper spectrumAnalyzerHelper;
338 
339  if (generateSpectrumTrace)
340  {
341  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
342  // position of Spectrum Analyzer
343  // positionAlloc->Add (Vector (0.0, 0.0, 0.0)); // eNB1
344  // positionAlloc->Add (Vector (distance, 0.0, 0.0)); // eNB2
345  positionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // eNB3
346 
348  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
349  mobility.SetPositionAllocator(positionAlloc);
350  mobility.Install(spectrumAnalyzerNodes);
351 
352  Ptr<LteSpectrumPhy> enbDlSpectrumPhy = enbDevs.Get(0)
353  ->GetObject<LteEnbNetDevice>()
354  ->GetPhy()
355  ->GetDownlinkSpectrumPhy()
357  Ptr<SpectrumChannel> dlChannel = enbDlSpectrumPhy->GetChannel();
358 
359  spectrumAnalyzerHelper.SetChannel(dlChannel);
361  spectrumAnalyzerHelper.SetRxSpectrumModel(sm);
362  spectrumAnalyzerHelper.SetPhyAttribute("Resolution", TimeValue(MicroSeconds(10)));
363  spectrumAnalyzerHelper.SetPhyAttribute("NoisePowerSpectralDensity",
364  DoubleValue(1e-15)); // -120 dBm/Hz
365  spectrumAnalyzerHelper.EnableAsciiAll("spectrum-analyzer-output");
366  spectrumAnalyzerHelper.Install(spectrumAnalyzerNodes);
367  }
368 
370  if (generateRem)
371  {
372  PrintGnuplottableEnbListToFile("enbs.txt");
374 
375  remHelper = CreateObject<RadioEnvironmentMapHelper>();
376  remHelper->SetAttribute("ChannelPath", StringValue("/ChannelList/0"));
377  remHelper->SetAttribute("OutputFile", StringValue("lena-frequency-reuse.rem"));
378  remHelper->SetAttribute("XMin", DoubleValue(macroUeBox.xMin));
379  remHelper->SetAttribute("XMax", DoubleValue(macroUeBox.xMax));
380  remHelper->SetAttribute("YMin", DoubleValue(macroUeBox.yMin));
381  remHelper->SetAttribute("YMax", DoubleValue(macroUeBox.yMax));
382  remHelper->SetAttribute("Z", DoubleValue(1.5));
383  remHelper->SetAttribute("XRes", UintegerValue(500));
384  remHelper->SetAttribute("YRes", UintegerValue(500));
385  if (remRbId >= 0)
386  {
387  remHelper->SetAttribute("UseDataChannel", BooleanValue(true));
388  remHelper->SetAttribute("RbId", IntegerValue(remRbId));
389  }
390 
391  remHelper->Install();
392  // simulation will stop right after the REM has been generated
393  }
394  else
395  {
396  Simulator::Stop(Seconds(simTime));
397  }
398 
399  Simulator::Run();
401  return 0;
402 }
AttributeValue implementation for Boolean.
Definition: boolean.h:37
a 3d box
Definition: box.h:35
double yMax
The y coordinate of the top bound of the box.
Definition: box.h:116
double xMin
The x coordinate of the left bound of the box.
Definition: box.h:110
double yMin
The y coordinate of the bottom bound of the box.
Definition: box.h:114
double xMax
The x coordinate of the right bound of the box.
Definition: box.h:112
double zMin
The z coordinate of the down bound of the box.
Definition: box.h:118
double zMax
The z coordinate of the up bound of the box.
Definition: box.h:120
Parse command-line arguments.
Definition: command-line.h:232
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Hold variables of type enum.
Definition: enum.h:56
This class contains the specification of EPS Bearers.
Definition: eps-bearer.h:91
Qci
QoS Class Indicator.
Definition: eps-bearer.h:106
@ GBR_CONV_VOICE
GBR Conversational Voice.
Definition: eps-bearer.h:107
Hold a signed integer type.
Definition: integer.h:45
The eNodeB device implementation.
uint16_t GetCellId() const
void SetFfrAlgorithmType(std::string type)
Set the type of FFR algorithm to be used by eNodeB devices.
Definition: lte-helper.cc:316
void SetSchedulerAttribute(std::string n, const AttributeValue &v)
Set an attribute for the scheduler to be created.
Definition: lte-helper.cc:303
NetDeviceContainer InstallEnbDevice(NodeContainer c)
Create a set of eNodeB devices.
Definition: lte-helper.cc:482
std::string GetFfrAlgorithmType() const
Definition: lte-helper.cc:310
void SetFfrAlgorithmAttribute(std::string n, const AttributeValue &v)
Set an attribute for the FFR algorithm to be created.
Definition: lte-helper.cc:324
void SetSchedulerType(std::string type)
Set the type of scheduler to be used by eNodeB devices.
Definition: lte-helper.cc:289
void Attach(NetDeviceContainer ueDevices)
Enables automatic attachment of a set of UE devices to a suitable cell using Idle mode initial cell s...
Definition: lte-helper.cc:1044
void SetEnbDeviceAttribute(std::string n, const AttributeValue &v)
Set an attribute for the eNodeB devices (LteEnbNetDevice) to be created.
Definition: lte-helper.cc:409
void ActivateDataRadioBearer(NetDeviceContainer ueDevices, EpsBearer bearer)
Activate a Data Radio Bearer on a given UE devices (for LTE-only simulation).
Definition: lte-helper.cc:1441
NetDeviceContainer InstallUeDevice(NodeContainer c)
Create a set of UE devices.
Definition: lte-helper.cc:497
void AttachToClosestEnb(NetDeviceContainer ueDevices, NetDeviceContainer enbDevices)
Manual attachment of a set of UE devices to the network via the closest eNodeB (with respect to dista...
Definition: lte-helper.cc:1127
The LteSpectrumPhy models the physical layer of LTE.
static Ptr< SpectrumModel > GetSpectrumModel(uint32_t earfcn, uint16_t bandwidth)
The LteUeNetDevice class implements the UE net device.
Helper class used to assign positions and mobility models to nodes.
Keep track of the current position and velocity of an object.
holds a vector of ns3::NetDevice pointers
uint32_t GetN() const
Get the number of Ptr<NetDevice> stored in this container.
void Add(NetDeviceContainer other)
Append the contents of another NetDeviceContainer to the end of this container.
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
uint32_t GetNDevices() const
Definition: node.cc:162
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:152
static Iterator Begin()
Definition: node-list.cc:237
std::vector< Ptr< Node > >::const_iterator Iterator
Node container iterator.
Definition: node-list.h:44
static Iterator End()
Definition: node-list.cc:244
void SetAttribute(std::string name, const AttributeValue &value)
Set a single attribute, raising fatal errors if unsuccessful.
Definition: object-base.cc:200
Ptr< T > GetObject() const
Get a pointer to the requested aggregated Object.
Definition: object.h:471
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Ptr< Object > GetObject() const
Get the Object referenced by the PointerValue.
Definition: pointer.cc:57
static void SetRun(uint64_t run)
Set the run number of simulation.
static void SetSeed(uint32_t seed)
Set the seed.
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:140
static void Run()
Run the simulation.
Definition: simulator.cc:176
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:184
Class to allow the Spectrum Analysis.
NetDeviceContainer Install(NodeContainer c) const
void SetPhyAttribute(std::string name, const AttributeValue &v)
void SetChannel(Ptr< SpectrumChannel > channel)
Set the SpectrumChannel that will be used by SpectrumPhy instances created by this helper.
void EnableAsciiAll(std::string prefix)
Enable ASCII output.
void SetRxSpectrumModel(Ptr< SpectrumModel > m)
Set the spectrum model used by the created SpectrumAnalyzer instances to represent incoming signals.
Hold variables of type string.
Definition: string.h:56
AttributeValue implementation for Time.
Definition: nstime.h:1423
Hold an unsigned integer type.
Definition: uinteger.h:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:891
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1360
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
void PrintGnuplottableEnbListToFile(std::string filename)
void PrintGnuplottableUeListToFile(std::string filename)
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:33
mobility
Definition: third.py:96