A Discrete-Event Network Simulator
API
realtime-simulator-impl.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2008 University of Washington
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17 
19 
20 #include "assert.h"
21 #include "boolean.h"
22 #include "enum.h"
23 #include "event-impl.h"
24 #include "fatal-error.h"
25 #include "log.h"
26 #include "pointer.h"
27 #include "ptr.h"
28 #include "scheduler.h"
29 #include "simulator.h"
30 #include "synchronizer.h"
32 
33 #include <cmath>
34 #include <mutex>
35 #include <thread>
36 
43 namespace ns3
44 {
45 
46 // Note: Logging in this file is largely avoided due to the
47 // number of calls that are made to these functions and the possibility
48 // of causing recursions leading to stack overflow
49 NS_LOG_COMPONENT_DEFINE("RealtimeSimulatorImpl");
50 
51 NS_OBJECT_ENSURE_REGISTERED(RealtimeSimulatorImpl);
52 
53 TypeId
55 {
56  static TypeId tid =
57  TypeId("ns3::RealtimeSimulatorImpl")
59  .SetGroupName("Core")
60  .AddConstructor<RealtimeSimulatorImpl>()
61  .AddAttribute(
62  "SynchronizationMode",
63  "What to do if the simulation cannot keep up with real time.",
66  MakeEnumChecker(SYNC_BEST_EFFORT, "BestEffort", SYNC_HARD_LIMIT, "HardLimit"))
67  .AddAttribute("HardLimit",
68  "Maximum acceptable real-time jitter (used in conjunction with "
69  "SynchronizationMode=HardLimit)",
70  TimeValue(Seconds(0.1)),
72  MakeTimeChecker());
73  return tid;
74 }
75 
77 {
78  NS_LOG_FUNCTION(this);
79 
80  m_stop = false;
81  m_running = false;
84  m_currentTs = 0;
87  m_eventCount = 0;
88 
89  m_main = std::this_thread::get_id();
90 
91  // Be very careful not to do anything that would cause a change or assignment
92  // of the underlying reference counts of m_synchronizer or you will be sorry.
93  m_synchronizer = CreateObject<WallClockSynchronizer>();
94 }
95 
97 {
98  NS_LOG_FUNCTION(this);
99 }
100 
101 void
103 {
104  NS_LOG_FUNCTION(this);
105  while (!m_events->IsEmpty())
106  {
107  Scheduler::Event next = m_events->RemoveNext();
108  next.impl->Unref();
109  }
110  m_events = nullptr;
111  m_synchronizer = nullptr;
113 }
114 
115 void
117 {
118  NS_LOG_FUNCTION(this);
119 
120  //
121  // This function is only called with the private version "disconnected" from
122  // the main simulator functions. We rely on the user not calling
123  // Simulator::Destroy while there is a chance that a worker thread could be
124  // accessing the current instance of the private object. In practice this
125  // means shutting down the workers and doing a Join() before calling the
126  // Simulator::Destroy().
127  //
128  while (m_destroyEvents.empty() == false)
129  {
130  Ptr<EventImpl> ev = m_destroyEvents.front().PeekEventImpl();
131  m_destroyEvents.pop_front();
132  NS_LOG_LOGIC("handle destroy " << ev);
133  if (ev->IsCancelled() == false)
134  {
135  ev->Invoke();
136  }
137  }
138 }
139 
140 void
142 {
143  NS_LOG_FUNCTION(this << schedulerFactory);
144 
145  Ptr<Scheduler> scheduler = schedulerFactory.Create<Scheduler>();
146 
147  {
148  std::unique_lock lock{m_mutex};
149 
150  if (m_events)
151  {
152  while (m_events->IsEmpty() == false)
153  {
154  Scheduler::Event next = m_events->RemoveNext();
155  scheduler->Insert(next);
156  }
157  }
158  m_events = scheduler;
159  }
160 }
161 
162 void
164 {
165  //
166  // The idea here is to wait until the next event comes due. In the case of
167  // a realtime simulation, we want real time to be consumed between events.
168  // It is the realtime synchronizer that causes real time to be consumed by
169  // doing some kind of a wait.
170  //
171  // We need to be able to have external events (such as a packet reception event)
172  // cause us to re-evaluate our state. The way this works is that the synchronizer
173  // gets interrupted and returns. So, there is a possibility that things may change
174  // out from under us dynamically. In this case, we need to re-evaluate how long to
175  // wait in a for-loop until we have waited successfully (until a timeout) for the
176  // event at the head of the event list.
177  //
178  // m_synchronizer->Synchronize will return true if the wait was completed without
179  // interruption, otherwise it will return false indicating that something has changed
180  // out from under us. If we sit in the for-loop trying to synchronize until
181  // Synchronize() returns true, we will have successfully synchronized the execution
182  // time of the next event with the wall clock time of the synchronizer.
183  //
184 
185  for (;;)
186  {
187  uint64_t tsDelay = 0;
188  uint64_t tsNext = 0;
189 
190  //
191  // It is important to understand that m_currentTs is interpreted only as the
192  // timestamp of the last event we executed. Current time can a bit of a
193  // slippery concept in realtime mode. What we have here is a discrete event
194  // simulator, so the last event is, by definition, executed entirely at a single
195  // discrete time. This is the definition of m_currentTs. It really has
196  // nothing to do with the current real time, except that we are trying to arrange
197  // that at the instant of the beginning of event execution, the current real time
198  // and m_currentTs coincide.
199  //
200  // We use tsNow as the indication of the current real time.
201  //
202  uint64_t tsNow;
203 
204  {
205  std::unique_lock lock{m_mutex};
206  //
207  // Since we are in realtime mode, the time to delay has got to be the
208  // difference between the current realtime and the timestamp of the next
209  // event. Since m_currentTs is actually the timestamp of the last event we
210  // executed, it's not particularly meaningful for us here since real time has
211  // certainly elapsed since it was last updated.
212  //
213  // It is possible that the current realtime has drifted past the next event
214  // time so we need to be careful about that and not delay in that case.
215  //
217  m_synchronizer->Realtime(),
218  "RealtimeSimulatorImpl::ProcessOneEvent (): Synchronizer reports not Realtime ()");
219 
220  //
221  // tsNow is set to the normalized current real time. When the simulation was
222  // started, the current real time was effectively set to zero; so tsNow is
223  // the current "real" simulation time.
224  //
225  // tsNext is the simulation time of the next event we want to execute.
226  //
227  tsNow = m_synchronizer->GetCurrentRealtime();
228  tsNext = NextTs();
229 
230  //
231  // tsDelay is therefore the real time we need to delay in order to bring the
232  // real time in sync with the simulation time. If we wait for this amount of
233  // real time, we will accomplish moving the simulation time at the same rate
234  // as the real time. This is typically called "pacing" the simulation time.
235  //
236  // We do have to be careful if we are falling behind. If so, tsDelay must be
237  // zero. If we're late, don't dawdle.
238  //
239  if (tsNext <= tsNow)
240  {
241  tsDelay = 0;
242  }
243  else
244  {
245  tsDelay = tsNext - tsNow;
246  }
247 
248  //
249  // We've figured out how long we need to delay in order to pace the
250  // simulation time with the real time. We're going to sleep, but need
251  // to work with the synchronizer to make sure we're awakened if something
252  // external happens (like a packet is received). This next line resets
253  // the synchronizer so that any future event will cause it to interrupt.
254  //
255  m_synchronizer->SetCondition(false);
256  }
257 
258  //
259  // We have a time to delay. This time may actually not be valid anymore
260  // since we released the critical section immediately above, and a real-time
261  // ScheduleReal or ScheduleRealNow may have snuck in, well, between the
262  // closing brace above and this comment so to speak. If this is the case,
263  // that schedule operation will have done a synchronizer Signal() that
264  // will set the condition variable to true and cause the Synchronize call
265  // below to return immediately.
266  //
267  // It's easiest to understand if you just consider a short tsDelay that only
268  // requires a SpinWait down in the synchronizer. What will happen is that
269  // when Synchronize calls SpinWait, SpinWait will look directly at its
270  // condition variable. Note that we set this condition variable to false
271  // inside the critical section above.
272  //
273  // SpinWait will go into a forever loop until either the time has expired or
274  // until the condition variable becomes true. A true condition indicates that
275  // the wait should stop. The condition is set to true by one of the Schedule
276  // methods of the simulator; so if we are in a wait down in Synchronize, and
277  // a Simulator::ScheduleReal is done, the wait down in Synchronize will exit and
278  // Synchronize will return false. This means we have not actually synchronized
279  // to the event expiration time. If no real-time schedule operation is done
280  // while down in Synchronize, the wait will time out and Synchronize will return
281  // true. This indicates that we have synchronized to the event time.
282  //
283  // So we need to stay in this for loop, looking for the next event timestamp and
284  // attempting to sleep until its due. If we've slept until the timestamp is due,
285  // Synchronize returns true and we break out of the sync loop. If an external
286  // event happens that requires a re-schedule, Synchronize returns false and
287  // we re-evaluate our timing by continuing in the loop.
288  //
289  // It is expected that tsDelay become shorter as external events interrupt our
290  // waits.
291  //
292  if (m_synchronizer->Synchronize(tsNow, tsDelay))
293  {
294  NS_LOG_LOGIC("Interrupted ...");
295  break;
296  }
297 
298  //
299  // If we get to this point, we have been interrupted during a wait by a real-time
300  // schedule operation. This means all bets are off regarding tsDelay and we need
301  // to re-evaluate what it is we want to do. We'll loop back around in the
302  // for-loop and start again from scratch.
303  //
304  }
305 
306  //
307  // If we break out of the for-loop above, we have waited until the time specified
308  // by the event that was at the head of the event list when we started the process.
309  // Since there is a bunch of code that was executed outside a critical section (the
310  // Synchronize call) we cannot be sure that the event at the head of the event list
311  // is the one we think it is. What we can be sure of is that it is time to execute
312  // whatever event is at the head of this list if the list is in time order.
313  //
314  Scheduler::Event next;
315 
316  {
317  std::unique_lock lock{m_mutex};
318 
319  //
320  // We do know we're waiting for an event, so there had better be an event on the
321  // event queue. Let's pull it off. When we release the critical section, the
322  // event we're working on won't be on the list and so subsequent operations won't
323  // mess with us.
324  //
325  NS_ASSERT_MSG(m_events->IsEmpty() == false,
326  "RealtimeSimulatorImpl::ProcessOneEvent(): event queue is empty");
327  next = m_events->RemoveNext();
328 
329  PreEventHook(EventId(next.impl, next.key.m_ts, next.key.m_context, next.key.m_uid));
330 
332  m_eventCount++;
333 
334  //
335  // We cannot make any assumption that "next" is the same event we originally waited
336  // for. We can only assume that only that it must be due and cannot cause time
337  // to move backward.
338  //
340  "RealtimeSimulatorImpl::ProcessOneEvent(): "
341  "next.GetTs() earlier than m_currentTs (list order error)");
342  NS_LOG_LOGIC("handle " << next.key.m_ts);
343 
344  //
345  // Update the current simulation time to be the timestamp of the event we're
346  // executing. From the rest of the simulation's point of view, simulation time
347  // is frozen until the next event is executed.
348  //
349  m_currentTs = next.key.m_ts;
351  m_currentUid = next.key.m_uid;
352 
353  //
354  // We're about to run the event and we've done our best to synchronize this
355  // event execution time to real time. Now, if we're in SYNC_HARD_LIMIT mode
356  // we have to decide if we've done a good enough job and if we haven't, we've
357  // been asked to commit ritual suicide.
358  //
359  // We check the simulation time against the current real time to make this
360  // judgement.
361  //
363  {
364  uint64_t tsFinal = m_synchronizer->GetCurrentRealtime();
365  uint64_t tsJitter;
366 
367  if (tsFinal >= m_currentTs)
368  {
369  tsJitter = tsFinal - m_currentTs;
370  }
371  else
372  {
373  tsJitter = m_currentTs - tsFinal;
374  }
375 
376  if (tsJitter > static_cast<uint64_t>(m_hardLimit.GetTimeStep()))
377  {
378  NS_FATAL_ERROR("RealtimeSimulatorImpl::ProcessOneEvent (): "
379  "Hard real-time limit exceeded (jitter = "
380  << tsJitter << ")");
381  }
382  }
383  }
384 
385  //
386  // We have got the event we're about to execute completely disentangled from the
387  // event list so we can execute it outside a critical section without fear of someone
388  // changing things out from under us.
389 
390  EventImpl* event = next.impl;
391  m_synchronizer->EventStart();
392  event->Invoke();
393  m_synchronizer->EventEnd();
394  event->Unref();
395 }
396 
397 bool
399 {
400  bool rc;
401  {
402  std::unique_lock lock{m_mutex};
403  rc = m_events->IsEmpty() || m_stop;
404  }
405 
406  return rc;
407 }
408 
409 //
410 // Peeks into event list. Should be called with critical section locked.
411 //
412 uint64_t
414 {
415  NS_ASSERT_MSG(m_events->IsEmpty() == false,
416  "RealtimeSimulatorImpl::NextTs(): event queue is empty");
417  Scheduler::Event ev = m_events->PeekNext();
418  return ev.key.m_ts;
419 }
420 
421 void
423 {
424  NS_LOG_FUNCTION(this);
425 
426  NS_ASSERT_MSG(m_running == false, "RealtimeSimulatorImpl::Run(): Simulator already running");
427 
428  // Set the current threadId as the main threadId
429  m_main = std::this_thread::get_id();
430 
431  m_stop = false;
432  m_running = true;
433  m_synchronizer->SetOrigin(m_currentTs);
434 
435  // Sleep until signalled
436  uint64_t tsNow = 0;
437  uint64_t tsDelay = 1000000000; // wait time of 1 second (in nanoseconds)
438 
439  while (!m_stop)
440  {
441  bool process = false;
442  {
443  std::unique_lock lock{m_mutex};
444 
445  if (!m_events->IsEmpty())
446  {
447  process = true;
448  }
449  else
450  {
451  // Get current timestamp while holding the critical section
452  tsNow = m_synchronizer->GetCurrentRealtime();
453  }
454  }
455 
456  if (!process)
457  {
458  // Sleep until signalled
459  tsNow = m_synchronizer->Synchronize(tsNow, tsDelay);
460 
461  // Re-check event queue
462  continue;
463  }
464 
465  ProcessOneEvent();
466  }
467 
468  //
469  // If the simulator stopped naturally by lack of events, make a
470  // consistency test to check that we didn't lose any events along the way.
471  //
472  {
473  std::unique_lock lock{m_mutex};
474 
475  NS_ASSERT_MSG(m_events->IsEmpty() == false || m_unscheduledEvents == 0,
476  "RealtimeSimulatorImpl::Run(): Empty queue and unprocessed events");
477  }
478 
479  m_running = false;
480 }
481 
482 bool
484 {
485  return m_running;
486 }
487 
488 bool
490 {
491  return m_synchronizer->Realtime();
492 }
493 
494 void
496 {
497  NS_LOG_FUNCTION(this);
498  m_stop = true;
499 }
500 
501 void
503 {
504  NS_LOG_FUNCTION(this << delay);
506 }
507 
508 //
509 // Schedule an event for a _relative_ time in the future.
510 //
511 EventId
513 {
514  NS_LOG_FUNCTION(this << delay << impl);
515 
516  Scheduler::Event ev;
517  {
518  std::unique_lock lock{m_mutex};
519  //
520  // This is the reason we had to bring the absolute time calculation in from the
521  // simulator.h into the implementation. Since the implementations may be
522  // multi-threaded, we need this calculation to be atomic. You can see it is
523  // here since we are running in a CriticalSection.
524  //
525  Time tAbsolute = Simulator::Now() + delay;
526  NS_ASSERT_MSG(delay.IsPositive(), "RealtimeSimulatorImpl::Schedule(): Negative delay");
527  ev.impl = impl;
528  ev.key.m_ts = (uint64_t)tAbsolute.GetTimeStep();
529  ev.key.m_context = GetContext();
530  ev.key.m_uid = m_uid;
531  m_uid++;
533  m_events->Insert(ev);
534  m_synchronizer->Signal();
535  }
536 
537  return EventId(impl, ev.key.m_ts, ev.key.m_context, ev.key.m_uid);
538 }
539 
540 void
541 RealtimeSimulatorImpl::ScheduleWithContext(uint32_t context, const Time& delay, EventImpl* impl)
542 {
543  NS_LOG_FUNCTION(this << context << delay << impl);
544 
545  {
546  std::unique_lock lock{m_mutex};
547  uint64_t ts;
548 
549  if (m_main == std::this_thread::get_id())
550  {
551  ts = m_currentTs + delay.GetTimeStep();
552  }
553  else
554  {
555  //
556  // If the simulator is running, we're pacing and have a meaningful
557  // realtime clock. If we're not, then m_currentTs is where we stopped.
558  //
559  ts = m_running ? m_synchronizer->GetCurrentRealtime() : m_currentTs;
560  ts += delay.GetTimeStep();
561  }
562 
564  "RealtimeSimulatorImpl::ScheduleRealtime(): schedule for time < m_currentTs");
565  Scheduler::Event ev;
566  ev.impl = impl;
567  ev.key.m_ts = ts;
568  ev.key.m_context = context;
569  ev.key.m_uid = m_uid;
570  m_uid++;
572  m_events->Insert(ev);
573  m_synchronizer->Signal();
574  }
575 }
576 
577 EventId
579 {
580  NS_LOG_FUNCTION(this << impl);
581  return Schedule(Time(0), impl);
582 }
583 
584 Time
586 {
587  return TimeStep(m_currentTs);
588 }
589 
590 //
591 // Schedule an event for a _relative_ time in the future.
592 //
593 void
595  const Time& time,
596  EventImpl* impl)
597 {
598  NS_LOG_FUNCTION(this << context << time << impl);
599 
600  {
601  std::unique_lock lock{m_mutex};
602 
603  uint64_t ts = m_synchronizer->GetCurrentRealtime() + time.GetTimeStep();
605  "RealtimeSimulatorImpl::ScheduleRealtime(): schedule for time < m_currentTs");
606  Scheduler::Event ev;
607  ev.impl = impl;
608  ev.key.m_ts = ts;
609  ev.key.m_uid = m_uid;
610  m_uid++;
612  m_events->Insert(ev);
613  m_synchronizer->Signal();
614  }
615 }
616 
617 void
619 {
620  NS_LOG_FUNCTION(this << time << impl);
622 }
623 
624 void
626 {
627  NS_LOG_FUNCTION(this << context << impl);
628  {
629  std::unique_lock lock{m_mutex};
630 
631  //
632  // If the simulator is running, we're pacing and have a meaningful
633  // realtime clock. If we're not, then m_currentTs is were we stopped.
634  //
635  uint64_t ts = m_running ? m_synchronizer->GetCurrentRealtime() : m_currentTs;
637  "RealtimeSimulatorImpl::ScheduleRealtimeNowWithContext(): schedule for time "
638  "< m_currentTs");
639  Scheduler::Event ev;
640  ev.impl = impl;
641  ev.key.m_ts = ts;
642  ev.key.m_uid = m_uid;
643  ev.key.m_context = context;
644  m_uid++;
646  m_events->Insert(ev);
647  m_synchronizer->Signal();
648  }
649 }
650 
651 void
653 {
654  NS_LOG_FUNCTION(this << impl);
656 }
657 
658 Time
660 {
661  return TimeStep(m_synchronizer->GetCurrentRealtime());
662 }
663 
664 EventId
666 {
667  NS_LOG_FUNCTION(this << impl);
668 
669  EventId id;
670  {
671  std::unique_lock lock{m_mutex};
672 
673  //
674  // Time doesn't really matter here (especially in realtime mode). It is
675  // overridden by the uid of DESTROY which identifies this as an event to be
676  // executed at Simulator::Destroy time.
677  //
678  id = EventId(Ptr<EventImpl>(impl, false), m_currentTs, 0xffffffff, EventId::UID::DESTROY);
679  m_destroyEvents.push_back(id);
680  m_uid++;
681  }
682 
683  return id;
684 }
685 
686 Time
688 {
689  //
690  // If the event has expired, there is no delay until it runs. It is not the
691  // case that there is a negative time until it runs.
692  //
693  if (IsExpired(id))
694  {
695  return TimeStep(0);
696  }
697 
698  return TimeStep(id.GetTs() - m_currentTs);
699 }
700 
701 void
703 {
704  if (id.GetUid() == EventId::UID::DESTROY)
705  {
706  // destroy events.
707  for (DestroyEvents::iterator i = m_destroyEvents.begin(); i != m_destroyEvents.end(); i++)
708  {
709  if (*i == id)
710  {
711  m_destroyEvents.erase(i);
712  break;
713  }
714  }
715  return;
716  }
717  if (IsExpired(id))
718  {
719  return;
720  }
721 
722  {
723  std::unique_lock lock{m_mutex};
724 
725  Scheduler::Event event;
726  event.impl = id.PeekEventImpl();
727  event.key.m_ts = id.GetTs();
728  event.key.m_context = id.GetContext();
729  event.key.m_uid = id.GetUid();
730 
731  m_events->Remove(event);
733  event.impl->Cancel();
734  event.impl->Unref();
735  }
736 }
737 
738 void
740 {
741  if (IsExpired(id) == false)
742  {
743  id.PeekEventImpl()->Cancel();
744  }
745 }
746 
747 bool
749 {
750  if (id.GetUid() == EventId::UID::DESTROY)
751  {
752  if (id.PeekEventImpl() == nullptr || id.PeekEventImpl()->IsCancelled())
753  {
754  return true;
755  }
756  // destroy events.
757  for (DestroyEvents::const_iterator i = m_destroyEvents.begin(); i != m_destroyEvents.end();
758  i++)
759  {
760  if (*i == id)
761  {
762  return false;
763  }
764  }
765  return true;
766  }
767 
768  //
769  // If the time of the event is less than the current timestamp of the
770  // simulator, the simulator has gone past the invocation time of the
771  // event, so the statement ev.GetTs () < m_currentTs does mean that
772  // the event has been fired even in realtime mode.
773  //
774  // The same is true for the next line involving the m_currentUid.
775  //
776  if (id.PeekEventImpl() == nullptr || id.GetTs() < m_currentTs ||
777  (id.GetTs() == m_currentTs && id.GetUid() <= m_currentUid) ||
778  id.PeekEventImpl()->IsCancelled())
779  {
780  return true;
781  }
782  else
783  {
784  return false;
785  }
786 }
787 
788 Time
790 {
791  return TimeStep(0x7fffffffffffffffLL);
792 }
793 
794 // System ID for non-distributed simulation is always zero
795 uint32_t
797 {
798  return 0;
799 }
800 
801 uint32_t
803 {
804  return m_currentContext;
805 }
806 
807 uint64_t
809 {
810  return m_eventCount;
811 }
812 
813 void
815 {
816  NS_LOG_FUNCTION(this << mode);
817  m_synchronizationMode = mode;
818 }
819 
822 {
823  NS_LOG_FUNCTION(this);
824  return m_synchronizationMode;
825 }
826 
827 void
829 {
830  NS_LOG_FUNCTION(this << limit);
831  m_hardLimit = limit;
832 }
833 
834 Time
836 {
837  NS_LOG_FUNCTION(this);
838  return m_hardLimit;
839 }
840 
841 } // namespace ns3
NS_ASSERT() and NS_ASSERT_MSG() macro definitions.
ns3::BooleanValue attribute value declarations.
Hold variables of type enum.
Definition: enum.h:56
An identifier for simulation events.
Definition: event-id.h:55
A simulation event.
Definition: event-impl.h:46
Instantiate subclasses of ns3::Object.
Ptr< Object > Create() const
Create an Object instance of the configured TypeId.
virtual void DoDispose()
Destructor implementation.
Definition: object.cc:353
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
Realtime version of SimulatorImpl.
Time RealtimeNow() const
Get the current real time from the synchronizer.
void ScheduleRealtime(const Time &delay, EventImpl *event)
Schedule a future event execution (in the same context).
uint64_t GetEventCount() const override
Get the number of events executed.
Ptr< Scheduler > m_events
The event list.
uint32_t GetContext() const override
Get the current simulation context.
DestroyEvents m_destroyEvents
Container for events to be run at destroy time.
uint32_t GetSystemId() const override
Get the system id of this simulator.
int m_unscheduledEvents
Unique id for the next event to be scheduled.
void Stop() override
Tell the Simulator the calling event should be the last one executed.
EventId ScheduleDestroy(EventImpl *event) override
Schedule an event to run at the end of the simulation, after the Stop() time or condition has been re...
Time GetHardLimit() const
Get the current fatal error threshold for SynchronizationMode SYNC_HARD_LIMIT.
void ScheduleRealtimeNow(EventImpl *event)
Schedule an event to run at the current virtual time.
void Run() override
Run the simulation.
bool m_running
Is the simulator currently running.
uint32_t m_currentContext
The event list.
bool IsExpired(const EventId &ev) const override
Check if an event has already run or been cancelled.
std::mutex m_mutex
Mutex to control access to key state.
SynchronizationMode m_synchronizationMode
SynchronizationMode policy.
void DoDispose() override
Destructor implementation.
uint64_t m_currentTs
Execution context.
void Cancel(const EventId &ev) override
Set the cancel bit on this event: the event's associated function will not be invoked when it expires...
EventId Schedule(const Time &delay, EventImpl *event) override
Schedule a future event execution (in the same context).
void SetHardLimit(Time limit)
Set the fatal error threshold for SynchronizationMode SYNC_HARD_LIMIT.
~RealtimeSimulatorImpl() override
Destructor.
uint32_t m_uid
Unique id of the current event.
uint64_t m_eventCount
The event count.
uint32_t m_currentUid
Timestep of the current event.
void ScheduleRealtimeNowWithContext(uint32_t context, EventImpl *event)
Schedule an event to run at the current virtual time.
bool m_stop
Has the stopping condition been reached?
Ptr< Synchronizer > m_synchronizer
The synchronizer in use to track real time.
bool IsFinished() const override
Check if the simulation should finish.
bool Realtime() const
Check that the Synchronizer is locked to the real time clock.
SynchronizationMode
What to do when we can't maintain real time synchrony.
@ SYNC_BEST_EFFORT
Make a best effort to keep synced to real-time.
@ SYNC_HARD_LIMIT
Keep to real time within the hard limit tolerance configured with SetHardLimit, or die trying.
Time m_hardLimit
The maximum allowable drift from real-time in SYNC_HARD_LIMIT mode.
static TypeId GetTypeId()
Get the registered TypeId for this class.
void ScheduleRealtimeWithContext(uint32_t context, const Time &delay, EventImpl *event)
Schedule a future event execution (in a different context).
Time GetDelayLeft(const EventId &id) const override
Get the remaining time until this event will execute.
void SetScheduler(ObjectFactory schedulerFactory) override
Set the Scheduler to be used to manage the event list.
void ScheduleWithContext(uint32_t context, const Time &delay, EventImpl *event) override
Schedule a future event execution (in a different context).
EventId ScheduleNow(EventImpl *event) override
Schedule an event to run at the current virtual time.
bool Running() const
Is the simulator running?
std::thread::id m_main
Main thread.
void ProcessOneEvent()
Process the next event.
Time Now() const override
Return the current simulation virtual time.
void Remove(const EventId &ev) override
Remove an event from the event list.
void Destroy() override
Execute the events scheduled with ScheduleDestroy().
void SetSynchronizationMode(RealtimeSimulatorImpl::SynchronizationMode mode)
Set the SynchronizationMode.
uint64_t NextTs() const
Get the timestep of the next event.
RealtimeSimulatorImpl::SynchronizationMode GetSynchronizationMode() const
Get the SynchronizationMode.
Time GetMaximumSimulationTime() const override
Get the maximum representable simulation time.
Maintain the event list.
Definition: scheduler.h:157
void Unref() const
Decrement the reference count.
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:568
@ NO_CONTEXT
Flag for events not associated with any particular context.
Definition: simulator.h:202
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:184
The SimulatorImpl base class.
virtual void PreEventHook(const EventId &id)
Hook called before processing each event.
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
bool IsPositive() const
Exactly equivalent to t >= 0.
Definition: nstime.h:332
int64_t GetTimeStep() const
Get the raw time value, in the current resolution unit.
Definition: nstime.h:444
AttributeValue implementation for Time.
Definition: nstime.h:1423
a unique identifier for an interface.
Definition: type-id.h:60
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
ns3::EnumValue attribute value declarations.
ns3::EventImpl declarations.
NS_FATAL_x macro definitions.
@ INVALID
INVALID.
Definition: aodv-rtable.h:53
@ VALID
VALID.
Definition: aodv-rtable.h:52
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeEnumAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: enum.h:205
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: nstime.h:1424
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
Debug message logging.
void(* Time)(Time oldValue, Time newValue)
TracedValue callback signature for Time.
Definition: nstime.h:848
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< const AttributeChecker > MakeEnumChecker(int v, std::string n, Ts... args)
Make an EnumChecker pre-configured with a set of allowed values by name.
Definition: enum.h:163
Ptr< const AttributeChecker > MakeTimeChecker(const Time min, const Time max)
Helper to make a Time checker with bounded range.
Definition: time.cc:535
ns3::PointerValue attribute value declarations and template implementations.
ns3::Ptr smart pointer declaration and implementation.
ns3::RealtimeSimulatorImpl declaration.
ns3::Scheduler abstract base class, ns3::Scheduler::Event and ns3::Scheduler::EventKey declarations.
ns3::Simulator declaration.
Scheduler event.
Definition: scheduler.h:184
EventKey key
Key for sorting and ordering Events.
Definition: scheduler.h:186
EventImpl * impl
Pointer to the event implementation.
Definition: scheduler.h:185
uint32_t m_context
Event context.
Definition: scheduler.h:173
uint64_t m_ts
Event time stamp.
Definition: scheduler.h:171
uint32_t m_uid
Event unique id.
Definition: scheduler.h:172
ns3::Synchronizer declaration.
ns3::WallClockSynchronizer declaration.