A Discrete-Event Network Simulator
API
rr-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Marco Miozzo <marco.miozzo@cttc.es>
18  */
19 
20 #include <ns3/boolean.h>
21 #include <ns3/log.h>
22 #include <ns3/lte-amc.h>
23 #include <ns3/lte-common.h>
24 #include <ns3/lte-vendor-specific-parameters.h>
25 #include <ns3/math.h>
26 #include <ns3/pointer.h>
27 #include <ns3/rr-ff-mac-scheduler.h>
28 #include <ns3/simulator.h>
29 
30 #include <cfloat>
31 #include <climits>
32 #include <set>
33 
34 namespace ns3
35 {
36 
37 NS_LOG_COMPONENT_DEFINE("RrFfMacScheduler");
38 
40 static const int Type0AllocationRbg[4] = {
41  10, // RGB size 1
42  26, // RGB size 2
43  63, // RGB size 3
44  110, // RGB size 4
45 }; // see table 7.1.6.1-1 of 36.213
46 
47 NS_OBJECT_ENSURE_REGISTERED(RrFfMacScheduler);
48 
50  : m_cschedSapUser(nullptr),
51  m_schedSapUser(nullptr),
52  m_nextRntiDl(0),
53  m_nextRntiUl(0)
54 {
55  m_amc = CreateObject<LteAmc>();
58 }
59 
61 {
62  NS_LOG_FUNCTION(this);
63 }
64 
65 void
67 {
68  NS_LOG_FUNCTION(this);
70  m_dlHarqProcessesTimer.clear();
72  m_dlInfoListBuffered.clear();
76  delete m_cschedSapProvider;
77  delete m_schedSapProvider;
78 }
79 
80 TypeId
82 {
83  static TypeId tid =
84  TypeId("ns3::RrFfMacScheduler")
86  .SetGroupName("Lte")
87  .AddConstructor<RrFfMacScheduler>()
88  .AddAttribute("CqiTimerThreshold",
89  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90  UintegerValue(1000),
92  MakeUintegerChecker<uint32_t>())
93  .AddAttribute("HarqEnabled",
94  "Activate/Deactivate the HARQ [by default is active].",
95  BooleanValue(true),
98  .AddAttribute("UlGrantMcs",
99  "The MCS of the UL grant, must be [0..15] (default 0)",
100  UintegerValue(0),
102  MakeUintegerChecker<uint8_t>());
103  return tid;
104 }
105 
106 void
108 {
109  m_cschedSapUser = s;
110 }
111 
112 void
114 {
115  m_schedSapUser = s;
116 }
117 
120 {
121  return m_cschedSapProvider;
122 }
123 
126 {
127  return m_schedSapProvider;
128 }
129 
130 void
132 {
133  m_ffrSapProvider = s;
134 }
135 
138 {
139  return m_ffrSapUser;
140 }
141 
142 void
145 {
146  NS_LOG_FUNCTION(this);
147  // Read the subset of parameters used
151  cnf.m_result = SUCCESS;
153 }
154 
155 void
158 {
159  NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
160  << (uint16_t)params.m_transmissionMode);
161  std::map<uint16_t, uint8_t>::iterator it = m_uesTxMode.find(params.m_rnti);
162  if (it == m_uesTxMode.end())
163  {
164  m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
165  // generate HARQ buffers
166  m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
167  DlHarqProcessesStatus_t dlHarqPrcStatus;
168  dlHarqPrcStatus.resize(8, 0);
170  std::pair<uint16_t, DlHarqProcessesStatus_t>(params.m_rnti, dlHarqPrcStatus));
171  DlHarqProcessesTimer_t dlHarqProcessesTimer;
172  dlHarqProcessesTimer.resize(8, 0);
173  m_dlHarqProcessesTimer.insert(
174  std::pair<uint16_t, DlHarqProcessesTimer_t>(params.m_rnti, dlHarqProcessesTimer));
175  DlHarqProcessesDciBuffer_t dlHarqdci;
176  dlHarqdci.resize(8);
178  std::pair<uint16_t, DlHarqProcessesDciBuffer_t>(params.m_rnti, dlHarqdci));
179  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
180  dlHarqRlcPdu.resize(2);
181  dlHarqRlcPdu.at(0).resize(8);
182  dlHarqRlcPdu.at(1).resize(8);
184  std::pair<uint16_t, DlHarqRlcPduListBuffer_t>(params.m_rnti, dlHarqRlcPdu));
185  m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
186  UlHarqProcessesStatus_t ulHarqPrcStatus;
187  ulHarqPrcStatus.resize(8, 0);
189  std::pair<uint16_t, UlHarqProcessesStatus_t>(params.m_rnti, ulHarqPrcStatus));
190  UlHarqProcessesDciBuffer_t ulHarqdci;
191  ulHarqdci.resize(8);
193  std::pair<uint16_t, UlHarqProcessesDciBuffer_t>(params.m_rnti, ulHarqdci));
194  }
195  else
196  {
197  (*it).second = params.m_transmissionMode;
198  }
199 }
200 
201 void
204 {
205  NS_LOG_FUNCTION(this);
206  // Not used at this stage (LCs updated by DoSchedDlRlcBufferReq)
207 }
208 
209 void
212 {
213  NS_LOG_FUNCTION(this);
214  for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
215  {
216  std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
217  m_rlcBufferReq.begin();
218  while (it != m_rlcBufferReq.end())
219  {
220  if (((*it).m_rnti == params.m_rnti) &&
221  ((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity.at(i)))
222  {
223  it = m_rlcBufferReq.erase(it);
224  }
225  else
226  {
227  it++;
228  }
229  }
230  }
231 }
232 
233 void
236 {
237  NS_LOG_FUNCTION(this << " Release RNTI " << params.m_rnti);
238 
239  m_uesTxMode.erase(params.m_rnti);
240  m_dlHarqCurrentProcessId.erase(params.m_rnti);
241  m_dlHarqProcessesStatus.erase(params.m_rnti);
242  m_dlHarqProcessesTimer.erase(params.m_rnti);
243  m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
245  m_ulHarqCurrentProcessId.erase(params.m_rnti);
246  m_ulHarqProcessesStatus.erase(params.m_rnti);
247  m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
248  m_ceBsrRxed.erase(params.m_rnti);
249  std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
250  m_rlcBufferReq.begin();
251  while (it != m_rlcBufferReq.end())
252  {
253  if ((*it).m_rnti == params.m_rnti)
254  {
255  NS_LOG_INFO(this << " Erase RNTI " << (*it).m_rnti << " LC "
256  << (uint16_t)(*it).m_logicalChannelIdentity);
257  it = m_rlcBufferReq.erase(it);
258  }
259  else
260  {
261  it++;
262  }
263  }
264  if (m_nextRntiUl == params.m_rnti)
265  {
266  m_nextRntiUl = 0;
267  }
268 
269  if (m_nextRntiDl == params.m_rnti)
270  {
271  m_nextRntiDl = 0;
272  }
273 }
274 
275 void
278 {
279  NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
280  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
281  std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
282  m_rlcBufferReq.begin();
283  bool newLc = true;
284  while (it != m_rlcBufferReq.end())
285  {
286  // remove old entries of this UE-LC
287  if (((*it).m_rnti == params.m_rnti) &&
288  ((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity))
289  {
290  it = m_rlcBufferReq.erase(it);
291  newLc = false;
292  }
293  else
294  {
295  ++it;
296  }
297  }
298  // add the new parameters
299  m_rlcBufferReq.insert(it, params);
300  NS_LOG_INFO(this << " RNTI " << params.m_rnti << " LC "
301  << (uint16_t)params.m_logicalChannelIdentity << " RLC tx size "
302  << params.m_rlcTransmissionQueueSize << " RLC retx size "
303  << params.m_rlcRetransmissionQueueSize << " RLC stat size "
304  << params.m_rlcStatusPduSize);
305  // initialize statistics of the flow in case of new flows
306  if (newLc == true)
307  {
308  m_p10CqiRxed.insert(
309  std::pair<uint16_t, uint8_t>(params.m_rnti, 1)); // only codeword 0 at this stage (SISO)
310  // initialized to 1 (i.e., the lowest value for transmitting a signal)
311  m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(params.m_rnti, m_cqiTimersThreshold));
312  }
313 }
314 
315 void
318 {
319  NS_LOG_FUNCTION(this);
320  NS_FATAL_ERROR("method not implemented");
321 }
322 
323 void
326 {
327  NS_LOG_FUNCTION(this);
328  NS_FATAL_ERROR("method not implemented");
329 }
330 
331 int
333 {
334  for (int i = 0; i < 4; i++)
335  {
336  if (dlbandwidth < Type0AllocationRbg[i])
337  {
338  return (i + 1);
339  }
340  }
341 
342  return (-1);
343 }
344 
345 bool
348 {
349  return (i.m_rnti < j.m_rnti);
350 }
351 
352 bool
354 {
355  NS_LOG_FUNCTION(this << rnti);
356 
357  std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
358  if (it == m_dlHarqCurrentProcessId.end())
359  {
360  NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
361  }
362  std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
363  m_dlHarqProcessesStatus.find(rnti);
364  if (itStat == m_dlHarqProcessesStatus.end())
365  {
366  NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
367  }
368  uint8_t i = (*it).second;
369  do
370  {
371  i = (i + 1) % HARQ_PROC_NUM;
372  } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
373  if ((*itStat).second.at(i) == 0)
374  {
375  return (true);
376  }
377  else
378  {
379  return (false); // return a not valid harq proc id
380  }
381 }
382 
383 uint8_t
385 {
386  NS_LOG_FUNCTION(this << rnti);
387 
388  if (m_harqOn == false)
389  {
390  return (0);
391  }
392 
393  std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
394  if (it == m_dlHarqCurrentProcessId.end())
395  {
396  NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
397  }
398  std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
399  m_dlHarqProcessesStatus.find(rnti);
400  if (itStat == m_dlHarqProcessesStatus.end())
401  {
402  NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
403  }
404  uint8_t i = (*it).second;
405  do
406  {
407  i = (i + 1) % HARQ_PROC_NUM;
408  } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
409  if ((*itStat).second.at(i) == 0)
410  {
411  (*it).second = i;
412  (*itStat).second.at(i) = 1;
413  }
414  else
415  {
416  return (9); // return a not valid harq proc id
417  }
418 
419  return ((*it).second);
420 }
421 
422 void
424 {
425  NS_LOG_FUNCTION(this);
426 
427  std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
428  for (itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
429  itTimers++)
430  {
431  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
432  {
433  if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
434  {
435  // reset HARQ process
436 
437  NS_LOG_INFO(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
438  std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
439  m_dlHarqProcessesStatus.find((*itTimers).first);
440  if (itStat == m_dlHarqProcessesStatus.end())
441  {
442  NS_FATAL_ERROR("No Process Id Status found for this RNTI "
443  << (*itTimers).first);
444  }
445  (*itStat).second.at(i) = 0;
446  (*itTimers).second.at(i) = 0;
447  }
448  else
449  {
450  (*itTimers).second.at(i)++;
451  }
452  }
453  }
454 }
455 
456 void
459 {
460  NS_LOG_FUNCTION(this << " DL Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
461  << (0xF & params.m_sfnSf));
462  // API generated by RLC for triggering the scheduling of a DL subframe
463 
466  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
468 
469  // Generate RBGs map
470  std::vector<bool> rbgMap;
471  uint16_t rbgAllocatedNum = 0;
472  std::set<uint16_t> rntiAllocated;
473  rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
474 
475  // update UL HARQ proc id
476  std::map<uint16_t, uint8_t>::iterator itProcId;
477  for (itProcId = m_ulHarqCurrentProcessId.begin(); itProcId != m_ulHarqCurrentProcessId.end();
478  itProcId++)
479  {
480  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
481  }
482 
483  // RACH Allocation
485  uint16_t rbStart = 0;
486  std::vector<struct RachListElement_s>::iterator itRach;
487  for (itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
488  {
490  (*itRach).m_estimatedSize,
491  " Default UL Grant MCS does not allow to send RACH messages");
492  BuildRarListElement_s newRar;
493  newRar.m_rnti = (*itRach).m_rnti;
494  // DL-RACH Allocation
495  // Ideal: no needs of configuring m_dci
496  // UL-RACH Allocation
497  newRar.m_grant.m_rnti = newRar.m_rnti;
498  newRar.m_grant.m_mcs = m_ulGrantMcs;
499  uint16_t rbLen = 1;
500  uint16_t tbSizeBits = 0;
501  // find lowest TB size that fits UL grant estimated size
502  while ((tbSizeBits < (*itRach).m_estimatedSize) &&
503  (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
504  {
505  rbLen++;
506  tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
507  }
508  if (tbSizeBits < (*itRach).m_estimatedSize)
509  {
510  // no more allocation space: finish allocation
511  break;
512  }
513  newRar.m_grant.m_rbStart = rbStart;
514  newRar.m_grant.m_rbLen = rbLen;
515  newRar.m_grant.m_tbSize = tbSizeBits / 8;
516  newRar.m_grant.m_hopping = false;
517  newRar.m_grant.m_tpc = 0;
518  newRar.m_grant.m_cqiRequest = false;
519  newRar.m_grant.m_ulDelay = false;
520  NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
521  << rbStart << " rbLen " << rbLen << " MCS " << (uint16_t)m_ulGrantMcs
522  << " tbSize " << newRar.m_grant.m_tbSize);
523  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
524  {
525  m_rachAllocationMap.at(i) = (*itRach).m_rnti;
526  }
527 
528  if (m_harqOn == true)
529  {
530  // generate UL-DCI for HARQ retransmissions
531  UlDciListElement_s uldci;
532  uldci.m_rnti = newRar.m_rnti;
533  uldci.m_rbLen = rbLen;
534  uldci.m_rbStart = rbStart;
535  uldci.m_mcs = m_ulGrantMcs;
536  uldci.m_tbSize = tbSizeBits / 8;
537  uldci.m_ndi = 1;
538  uldci.m_cceIndex = 0;
539  uldci.m_aggrLevel = 1;
540  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
541  uldci.m_hopping = false;
542  uldci.m_n2Dmrs = 0;
543  uldci.m_tpc = 0; // no power control
544  uldci.m_cqiRequest = false; // only period CQI at this stage
545  uldci.m_ulIndex = 0; // TDD parameter
546  uldci.m_dai = 1; // TDD parameter
547  uldci.m_freqHopping = 0;
548  uldci.m_pdcchPowerOffset = 0; // not used
549 
550  uint8_t harqId = 0;
551  std::map<uint16_t, uint8_t>::iterator itProcId;
552  itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
553  if (itProcId == m_ulHarqCurrentProcessId.end())
554  {
555  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
556  }
557  harqId = (*itProcId).second;
558  std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
560  if (itDci == m_ulHarqProcessesDciBuffer.end())
561  {
562  NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
563  << uldci.m_rnti);
564  }
565  (*itDci).second.at(harqId) = uldci;
566  }
567 
568  rbStart = rbStart + rbLen;
569  ret.m_buildRarList.push_back(newRar);
570  }
571  m_rachList.clear();
572 
573  // Process DL HARQ feedback
575  // retrieve past HARQ retx buffered
576  if (!m_dlInfoListBuffered.empty())
577  {
578  if (!params.m_dlInfoList.empty())
579  {
580  NS_LOG_INFO(this << " Received DL-HARQ feedback");
582  params.m_dlInfoList.begin(),
583  params.m_dlInfoList.end());
584  }
585  }
586  else
587  {
588  if (!params.m_dlInfoList.empty())
589  {
590  m_dlInfoListBuffered = params.m_dlInfoList;
591  }
592  }
593  if (m_harqOn == false)
594  {
595  // Ignore HARQ feedback
596  m_dlInfoListBuffered.clear();
597  }
598  std::vector<struct DlInfoListElement_s> dlInfoListUntxed;
599  for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
600  {
601  std::set<uint16_t>::iterator itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
602  if (itRnti != rntiAllocated.end())
603  {
604  // RNTI already allocated for retx
605  continue;
606  }
607  auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
608  std::vector<bool> retx;
609  NS_LOG_INFO(this << " Processing DLHARQ feedback");
610  if (nLayers == 1)
611  {
612  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
614  retx.push_back(false);
615  }
616  else
617  {
618  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
620  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
622  }
623  if (retx.at(0) || retx.at(1))
624  {
625  // retrieve HARQ process information
626  uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
627  uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
628  NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
629  std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq =
630  m_dlHarqProcessesDciBuffer.find(rnti);
631  if (itHarq == m_dlHarqProcessesDciBuffer.end())
632  {
633  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
634  }
635 
636  DlDciListElement_s dci = (*itHarq).second.at(harqId);
637  int rv = 0;
638  if (dci.m_rv.size() == 1)
639  {
640  rv = dci.m_rv.at(0);
641  }
642  else
643  {
644  rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
645  }
646 
647  if (rv == 3)
648  {
649  // maximum number of retx reached -> drop process
650  NS_LOG_INFO("Max number of retransmissions reached -> drop process");
651  std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
652  m_dlHarqProcessesStatus.find(rnti);
653  if (it == m_dlHarqProcessesStatus.end())
654  {
655  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
656  << m_dlInfoListBuffered.at(i).m_rnti);
657  }
658  (*it).second.at(harqId) = 0;
659  std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
661  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
662  {
663  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
664  << m_dlInfoListBuffered.at(i).m_rnti);
665  }
666  for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
667  {
668  (*itRlcPdu).second.at(k).at(harqId).clear();
669  }
670  continue;
671  }
672  // check the feasibility of retransmitting on the same RBGs
673  // translate the DCI to Spectrum framework
674  std::vector<int> dciRbg;
675  uint32_t mask = 0x1;
676  NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
677  for (int j = 0; j < 32; j++)
678  {
679  if (((dci.m_rbBitmap & mask) >> j) == 1)
680  {
681  dciRbg.push_back(j);
682  NS_LOG_INFO("\t" << j);
683  }
684  mask = (mask << 1);
685  }
686  bool free = true;
687  for (std::size_t j = 0; j < dciRbg.size(); j++)
688  {
689  if (rbgMap.at(dciRbg.at(j)) == true)
690  {
691  free = false;
692  break;
693  }
694  }
695  if (free)
696  {
697  // use the same RBGs for the retx
698  // reserve RBGs
699  for (std::size_t j = 0; j < dciRbg.size(); j++)
700  {
701  rbgMap.at(dciRbg.at(j)) = true;
702  NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
703  rbgAllocatedNum++;
704  }
705 
706  NS_LOG_INFO(this << " Send retx in the same RBGs");
707  }
708  else
709  {
710  // find RBGs for sending HARQ retx
711  uint8_t j = 0;
712  uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
713  uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
714  std::vector<bool> rbgMapCopy = rbgMap;
715  while ((j < dciRbg.size()) && (startRbg != rbgId))
716  {
717  if (rbgMapCopy.at(rbgId) == false)
718  {
719  rbgMapCopy.at(rbgId) = true;
720  dciRbg.at(j) = rbgId;
721  j++;
722  }
723  rbgId = (rbgId + 1) % rbgNum;
724  }
725  if (j == dciRbg.size())
726  {
727  // find new RBGs -> update DCI map
728  uint32_t rbgMask = 0;
729  for (std::size_t k = 0; k < dciRbg.size(); k++)
730  {
731  rbgMask = rbgMask + (0x1 << dciRbg.at(k));
732  NS_LOG_INFO(this << " New allocated RBG " << dciRbg.at(k));
733  rbgAllocatedNum++;
734  }
735  dci.m_rbBitmap = rbgMask;
736  rbgMap = rbgMapCopy;
737  }
738  else
739  {
740  // HARQ retx cannot be performed on this TTI -> store it
741  dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
742  NS_LOG_INFO(this << " No resource for this retx -> buffer it");
743  }
744  }
745  // retrieve RLC PDU list for retx TBsize and update DCI
747  std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
749  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
750  {
751  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
752  }
753  for (std::size_t j = 0; j < nLayers; j++)
754  {
755  if (retx.at(j))
756  {
757  if (j >= dci.m_ndi.size())
758  {
759  // for avoiding errors in MIMO transient phases
760  dci.m_ndi.push_back(0);
761  dci.m_rv.push_back(0);
762  dci.m_mcs.push_back(0);
763  dci.m_tbsSize.push_back(0);
764  NS_LOG_INFO(this << " layer " << (uint16_t)j
765  << " no txed (MIMO transition)");
766  }
767  else
768  {
769  dci.m_ndi.at(j) = 0;
770  dci.m_rv.at(j)++;
771  (*itHarq).second.at(harqId).m_rv.at(j)++;
772  NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
773  << (uint16_t)dci.m_rv.at(j));
774  }
775  }
776  else
777  {
778  // empty TB of layer j
779  dci.m_ndi.at(j) = 0;
780  dci.m_rv.at(j) = 0;
781  dci.m_mcs.at(j) = 0;
782  dci.m_tbsSize.at(j) = 0;
783  NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
784  }
785  }
786 
787  for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
788  {
789  std::vector<struct RlcPduListElement_s> rlcPduListPerLc;
790  for (std::size_t j = 0; j < nLayers; j++)
791  {
792  if (retx.at(j))
793  {
794  if (j < dci.m_ndi.size())
795  {
796  NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
797  << dci.m_tbsSize.at(j));
798  rlcPduListPerLc.push_back(
799  (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
800  }
801  }
802  else
803  { // if no retx needed on layer j, push an RlcPduListElement_s object with
804  // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
805  NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
806  RlcPduListElement_s emptyElement;
807  emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
808  .second.at(j)
809  .at(dci.m_harqProcess)
810  .at(k)
811  .m_logicalChannelIdentity;
812  emptyElement.m_size = 0;
813  rlcPduListPerLc.push_back(emptyElement);
814  }
815  }
816 
817  if (!rlcPduListPerLc.empty())
818  {
819  newEl.m_rlcPduList.push_back(rlcPduListPerLc);
820  }
821  }
822  newEl.m_rnti = rnti;
823  newEl.m_dci = dci;
824  (*itHarq).second.at(harqId).m_rv = dci.m_rv;
825  // refresh timer
826  std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
827  m_dlHarqProcessesTimer.find(rnti);
828  if (itHarqTimer == m_dlHarqProcessesTimer.end())
829  {
830  NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
831  }
832  (*itHarqTimer).second.at(harqId) = 0;
833  ret.m_buildDataList.push_back(newEl);
834  rntiAllocated.insert(rnti);
835  }
836  else
837  {
838  // update HARQ process status
839  NS_LOG_INFO(this << " HARQ ACK UE " << m_dlInfoListBuffered.at(i).m_rnti);
840  std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
842  if (it == m_dlHarqProcessesStatus.end())
843  {
844  NS_FATAL_ERROR("No info find in HARQ buffer for UE "
845  << m_dlInfoListBuffered.at(i).m_rnti);
846  }
847  (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
848  std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
850  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
851  {
852  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
853  << m_dlInfoListBuffered.at(i).m_rnti);
854  }
855  for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
856  {
857  (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
858  }
859  }
860  }
861  m_dlInfoListBuffered.clear();
862  m_dlInfoListBuffered = dlInfoListUntxed;
863 
864  if (rbgAllocatedNum == rbgNum)
865  {
866  // all the RBGs are already allocated -> exit
867  if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
868  {
870  }
871  return;
872  }
873 
874  // Get the actual active flows (queue!=0)
875  std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
877  int nflows = 0;
878  int nTbs = 0;
879  std::map<uint16_t, uint8_t> lcActivesPerRnti; // tracks how many active LCs per RNTI there are
880  std::map<uint16_t, uint8_t>::iterator itLcRnti;
881  for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
882  {
883  // remove old entries of this UE-LC
884  std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).m_rnti);
885  if ((((*it).m_rlcTransmissionQueueSize > 0) || ((*it).m_rlcRetransmissionQueueSize > 0) ||
886  ((*it).m_rlcStatusPduSize > 0)) &&
887  (itRnti == rntiAllocated.end()) // UE must not be allocated for HARQ retx
888  && (HarqProcessAvailability((*it).m_rnti))) // UE needs HARQ proc free
889 
890  {
891  NS_LOG_LOGIC(this << " User " << (*it).m_rnti << " LC "
892  << (uint16_t)(*it).m_logicalChannelIdentity << " is active, status "
893  << (*it).m_rlcStatusPduSize << " retx "
894  << (*it).m_rlcRetransmissionQueueSize << " tx "
895  << (*it).m_rlcTransmissionQueueSize);
896  std::map<uint16_t, uint8_t>::iterator itCqi = m_p10CqiRxed.find((*it).m_rnti);
897  uint8_t cqi = 0;
898  if (itCqi != m_p10CqiRxed.end())
899  {
900  cqi = (*itCqi).second;
901  }
902  else
903  {
904  cqi = 1; // lowest value for trying a transmission
905  }
906  if (cqi != 0)
907  {
908  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
909  nflows++;
910  itLcRnti = lcActivesPerRnti.find((*it).m_rnti);
911  if (itLcRnti != lcActivesPerRnti.end())
912  {
913  (*itLcRnti).second++;
914  }
915  else
916  {
917  lcActivesPerRnti.insert(std::pair<uint16_t, uint8_t>((*it).m_rnti, 1));
918  nTbs++;
919  }
920  }
921  }
922  }
923 
924  if (nflows == 0)
925  {
926  if ((!ret.m_buildDataList.empty()) || (!ret.m_buildRarList.empty()))
927  {
929  }
930  return;
931  }
932  // Divide the resource equally among the active users according to
933  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
934 
935  int rbgPerTb = (nTbs > 0) ? ((rbgNum - rbgAllocatedNum) / nTbs) : INT_MAX;
936  NS_LOG_INFO(this << " Flows to be transmitted " << nflows << " rbgPerTb " << rbgPerTb);
937  if (rbgPerTb == 0)
938  {
939  rbgPerTb = 1; // at least 1 rbg per TB (till available resource)
940  }
941  int rbgAllocated = 0;
942 
943  // round robin assignment to all UEs registered starting from the subsequent of the one
944  // served last scheduling trigger event
945  if (m_nextRntiDl != 0)
946  {
947  NS_LOG_DEBUG("Start from the successive of " << (uint16_t)m_nextRntiDl);
948  for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
949  {
950  if ((*it).m_rnti == m_nextRntiDl)
951  {
952  // select the next RNTI to starting
953  it++;
954  if (it == m_rlcBufferReq.end())
955  {
956  it = m_rlcBufferReq.begin();
957  }
958  m_nextRntiDl = (*it).m_rnti;
959  break;
960  }
961  }
962 
963  if (it == m_rlcBufferReq.end())
964  {
965  NS_LOG_ERROR(this << " no user found");
966  }
967  }
968  else
969  {
970  it = m_rlcBufferReq.begin();
971  m_nextRntiDl = (*it).m_rnti;
972  }
973  std::map<uint16_t, uint8_t>::iterator itTxMode;
974  do
975  {
976  itLcRnti = lcActivesPerRnti.find((*it).m_rnti);
977  std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).m_rnti);
978  if ((itLcRnti == lcActivesPerRnti.end()) || (itRnti != rntiAllocated.end()))
979  {
980  // skip this RNTI (no active queue or yet allocated for HARQ)
981  uint16_t rntiDiscared = (*it).m_rnti;
982  while (it != m_rlcBufferReq.end())
983  {
984  if ((*it).m_rnti != rntiDiscared)
985  {
986  break;
987  }
988  it++;
989  }
990  if (it == m_rlcBufferReq.end())
991  {
992  // restart from the first
993  it = m_rlcBufferReq.begin();
994  }
995  continue;
996  }
997  itTxMode = m_uesTxMode.find((*it).m_rnti);
998  if (itTxMode == m_uesTxMode.end())
999  {
1000  NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).m_rnti);
1001  }
1002  auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1003  int lcNum = (*itLcRnti).second;
1004  // create new BuildDataListElement_s for this RNTI
1005  BuildDataListElement_s newEl;
1006  newEl.m_rnti = (*it).m_rnti;
1007  // create the DlDciListElement_s
1008  DlDciListElement_s newDci;
1009  newDci.m_rnti = (*it).m_rnti;
1010  newDci.m_harqProcess = UpdateHarqProcessId((*it).m_rnti);
1011  newDci.m_resAlloc = 0;
1012  newDci.m_rbBitmap = 0;
1013  std::map<uint16_t, uint8_t>::iterator itCqi = m_p10CqiRxed.find(newEl.m_rnti);
1014  for (uint8_t i = 0; i < nLayer; i++)
1015  {
1016  if (itCqi == m_p10CqiRxed.end())
1017  {
1018  newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1019  }
1020  else
1021  {
1022  newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1023  }
1024  }
1025  int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(0), rbgPerTb * rbgSize) / 8);
1026  uint16_t rlcPduSize = tbSize / lcNum;
1027  while ((*it).m_rnti == newEl.m_rnti)
1028  {
1029  if (((*it).m_rlcTransmissionQueueSize > 0) ||
1030  ((*it).m_rlcRetransmissionQueueSize > 0) || ((*it).m_rlcStatusPduSize > 0))
1031  {
1032  std::vector<struct RlcPduListElement_s> newRlcPduLe;
1033  for (uint8_t j = 0; j < nLayer; j++)
1034  {
1035  RlcPduListElement_s newRlcEl;
1036  newRlcEl.m_logicalChannelIdentity = (*it).m_logicalChannelIdentity;
1037  NS_LOG_INFO(this << "LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1038  << " size " << rlcPduSize << " ID " << (*it).m_rnti
1039  << " layer " << (uint16_t)j);
1040  newRlcEl.m_size = rlcPduSize;
1041  UpdateDlRlcBufferInfo((*it).m_rnti,
1042  newRlcEl.m_logicalChannelIdentity,
1043  rlcPduSize);
1044  newRlcPduLe.push_back(newRlcEl);
1045 
1046  if (m_harqOn == true)
1047  {
1048  // store RLC PDU list for HARQ
1049  std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
1050  m_dlHarqProcessesRlcPduListBuffer.find((*it).m_rnti);
1051  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1052  {
1053  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1054  << (*it).m_rnti);
1055  }
1056  (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1057  }
1058  }
1059  newEl.m_rlcPduList.push_back(newRlcPduLe);
1060  lcNum--;
1061  }
1062  it++;
1063  if (it == m_rlcBufferReq.end())
1064  {
1065  // restart from the first
1066  it = m_rlcBufferReq.begin();
1067  break;
1068  }
1069  }
1070  uint32_t rbgMask = 0;
1071  uint16_t i = 0;
1072  NS_LOG_INFO(this << " DL - Allocate user " << newEl.m_rnti << " LCs "
1073  << (uint16_t)(*itLcRnti).second << " bytes " << tbSize << " mcs "
1074  << (uint16_t)newDci.m_mcs.at(0) << " harqId "
1075  << (uint16_t)newDci.m_harqProcess << " layers " << nLayer);
1076  NS_LOG_INFO("RBG:");
1077  while (i < rbgPerTb)
1078  {
1079  if (rbgMap.at(rbgAllocated) == false)
1080  {
1081  rbgMask = rbgMask + (0x1 << rbgAllocated);
1082  NS_LOG_INFO("\t " << rbgAllocated);
1083  i++;
1084  rbgMap.at(rbgAllocated) = true;
1085  rbgAllocatedNum++;
1086  }
1087  rbgAllocated++;
1088  }
1089  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1090 
1091  for (std::size_t i = 0; i < nLayer; i++)
1092  {
1093  newDci.m_tbsSize.push_back(tbSize);
1094  newDci.m_ndi.push_back(1);
1095  newDci.m_rv.push_back(0);
1096  }
1097 
1098  newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1099 
1100  newEl.m_dci = newDci;
1101  if (m_harqOn == true)
1102  {
1103  // store DCI for HARQ
1104  std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci =
1105  m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1106  if (itDci == m_dlHarqProcessesDciBuffer.end())
1107  {
1108  NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1109  << newEl.m_rnti);
1110  }
1111  (*itDci).second.at(newDci.m_harqProcess) = newDci;
1112  // refresh timer
1113  std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
1114  m_dlHarqProcessesTimer.find(newEl.m_rnti);
1115  if (itHarqTimer == m_dlHarqProcessesTimer.end())
1116  {
1117  NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1118  }
1119  (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1120  }
1121  // ...more parameters -> ignored in this version
1122 
1123  ret.m_buildDataList.push_back(newEl);
1124  if (rbgAllocatedNum == rbgNum)
1125  {
1126  m_nextRntiDl = newEl.m_rnti; // store last RNTI served
1127  break; // no more RGB to be allocated
1128  }
1129  } while ((*it).m_rnti != m_nextRntiDl);
1130 
1131  ret.m_nrOfPdcchOfdmSymbols = 1;
1132 
1134 }
1135 
1136 void
1139 {
1140  NS_LOG_FUNCTION(this);
1141 
1142  m_rachList = params.m_rachList;
1143 }
1144 
1145 void
1148 {
1149  NS_LOG_FUNCTION(this);
1150 
1151  std::map<uint16_t, uint8_t>::iterator it;
1152  for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1153  {
1154  if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1155  {
1156  NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1157  << " reported");
1158  std::map<uint16_t, uint8_t>::iterator it;
1159  uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1160  it = m_p10CqiRxed.find(rnti);
1161  if (it == m_p10CqiRxed.end())
1162  {
1163  // create the new entry
1164  m_p10CqiRxed.insert(std::pair<uint16_t, uint8_t>(
1165  rnti,
1166  params.m_cqiList.at(i).m_wbCqi.at(0))); // only codeword 0 at this stage (SISO)
1167  // generate correspondent timer
1168  m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1169  }
1170  else
1171  {
1172  // update the CQI value
1173  (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1174  // update correspondent timer
1175  std::map<uint16_t, uint32_t>::iterator itTimers;
1176  itTimers = m_p10CqiTimers.find(rnti);
1177  (*itTimers).second = m_cqiTimersThreshold;
1178  }
1179  }
1180  else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1181  {
1182  // subband CQI reporting high layer configured
1183  // Not used by RR Scheduler
1184  }
1185  else
1186  {
1187  NS_LOG_ERROR(this << " CQI type unknown");
1188  }
1189  }
1190 }
1191 
1192 void
1195 {
1196  NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1197  << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1198 
1199  RefreshUlCqiMaps();
1200 
1201  // Generate RBs map
1203  std::vector<bool> rbMap;
1204  std::set<uint16_t> rntiAllocated;
1205  std::vector<uint16_t> rbgAllocationMap;
1206  // update with RACH allocation map
1207  rbgAllocationMap = m_rachAllocationMap;
1208  // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1209  m_rachAllocationMap.clear();
1211 
1212  rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1213  // remove RACH allocation
1214  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1215  {
1216  if (rbgAllocationMap.at(i) != 0)
1217  {
1218  rbMap.at(i) = true;
1219  NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1220  }
1221  }
1222 
1223  if (m_harqOn == true)
1224  {
1225  // Process UL HARQ feedback
1226  for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1227  {
1228  if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1229  {
1230  // retx correspondent block: retrieve the UL-DCI
1231  uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1232  std::map<uint16_t, uint8_t>::iterator itProcId =
1233  m_ulHarqCurrentProcessId.find(rnti);
1234  if (itProcId == m_ulHarqCurrentProcessId.end())
1235  {
1236  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1237  }
1238  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1239  NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId "
1240  << (uint16_t)harqId);
1241  std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq =
1242  m_ulHarqProcessesDciBuffer.find(rnti);
1243  if (itHarq == m_ulHarqProcessesDciBuffer.end())
1244  {
1245  NS_LOG_ERROR("No info find in UL-HARQ buffer for UE (might change eNB) "
1246  << rnti);
1247  }
1248  UlDciListElement_s dci = (*itHarq).second.at(harqId);
1249  std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1250  m_ulHarqProcessesStatus.find(rnti);
1251  if (itStat == m_ulHarqProcessesStatus.end())
1252  {
1253  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1254  }
1255  if ((*itStat).second.at(harqId) >= 3)
1256  {
1257  NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1258  continue;
1259  }
1260  bool free = true;
1261  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1262  {
1263  if (rbMap.at(j) == true)
1264  {
1265  free = false;
1266  NS_LOG_INFO(this << " BUSY " << j);
1267  }
1268  }
1269  if (free)
1270  {
1271  // retx on the same RBs
1272  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1273  {
1274  rbMap.at(j) = true;
1275  rbgAllocationMap.at(j) = dci.m_rnti;
1276  NS_LOG_INFO("\tRB " << j);
1277  }
1278  NS_LOG_INFO(this << " Send retx in the same RBGs " << (uint16_t)dci.m_rbStart
1279  << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1280  << (*itStat).second.at(harqId) + 1);
1281  }
1282  else
1283  {
1284  NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1285  continue;
1286  }
1287  dci.m_ndi = 0;
1288  // Update HARQ buffers with new HarqId
1289  (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1290  (*itStat).second.at(harqId) = 0;
1291  (*itHarq).second.at((*itProcId).second) = dci;
1292  ret.m_dciList.push_back(dci);
1293  rntiAllocated.insert(dci.m_rnti);
1294  }
1295  }
1296  }
1297 
1298  std::map<uint16_t, uint32_t>::iterator it;
1299  int nflows = 0;
1300 
1301  for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1302  {
1303  std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1304  // select UEs with queues not empty and not yet allocated for HARQ
1305  NS_LOG_INFO(this << " UE " << (*it).first << " queue " << (*it).second);
1306  if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1307  {
1308  nflows++;
1309  }
1310  }
1311 
1312  if (nflows == 0)
1313  {
1314  if (!ret.m_dciList.empty())
1315  {
1316  m_allocationMaps.insert(
1317  std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1319  }
1320  return; // no flows to be scheduled
1321  }
1322 
1323  // Divide the remaining resources equally among the active users starting from the subsequent
1324  // one served last scheduling trigger
1325  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1326  if (rbPerFlow < 3)
1327  {
1328  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1329  // >= 7 bytes
1330  }
1331  uint16_t rbAllocated = 0;
1332 
1333  if (m_nextRntiUl != 0)
1334  {
1335  for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1336  {
1337  if ((*it).first == m_nextRntiUl)
1338  {
1339  break;
1340  }
1341  }
1342  if (it == m_ceBsrRxed.end())
1343  {
1344  NS_LOG_ERROR(this << " no user found");
1345  }
1346  }
1347  else
1348  {
1349  it = m_ceBsrRxed.begin();
1350  m_nextRntiUl = (*it).first;
1351  }
1352  NS_LOG_INFO(this << " NFlows " << nflows << " RB per Flow " << rbPerFlow);
1353  do
1354  {
1355  std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1356  if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1357  {
1358  // UE already allocated for UL-HARQ -> skip it
1359  it++;
1360  if (it == m_ceBsrRxed.end())
1361  {
1362  // restart from the first
1363  it = m_ceBsrRxed.begin();
1364  }
1365  continue;
1366  }
1367  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1368  {
1369  // limit to physical resources last resource assignment
1370  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1371  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1372  if (rbPerFlow < 3)
1373  {
1374  // terminate allocation
1375  rbPerFlow = 0;
1376  }
1377  }
1378  NS_LOG_INFO(this << " try to allocate " << (*it).first);
1379  UlDciListElement_s uldci;
1380  uldci.m_rnti = (*it).first;
1381  uldci.m_rbLen = rbPerFlow;
1382  bool allocated = false;
1383  NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1384  << " flows " << nflows);
1385  while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1386  (rbPerFlow != 0))
1387  {
1388  // check availability
1389  bool free = true;
1390  for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1391  {
1392  if (rbMap.at(j) == true)
1393  {
1394  free = false;
1395  break;
1396  }
1397  }
1398  if (free)
1399  {
1400  uldci.m_rbStart = rbAllocated;
1401 
1402  for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1403  {
1404  rbMap.at(j) = true;
1405  // store info on allocation for managing ul-cqi interpretation
1406  rbgAllocationMap.at(j) = (*it).first;
1407  NS_LOG_INFO("\t " << j);
1408  }
1409  rbAllocated += rbPerFlow;
1410  allocated = true;
1411  break;
1412  }
1413  rbAllocated++;
1414  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1415  {
1416  // limit to physical resources last resource assignment
1417  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1418  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1419  if (rbPerFlow < 3)
1420  {
1421  // terminate allocation
1422  rbPerFlow = 0;
1423  }
1424  }
1425  }
1426  if (!allocated)
1427  {
1428  // unable to allocate new resource: finish scheduling
1429  m_nextRntiUl = (*it).first;
1430  if (!ret.m_dciList.empty())
1431  {
1433  }
1434  m_allocationMaps.insert(
1435  std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1436  return;
1437  }
1438  std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find((*it).first);
1439  int cqi = 0;
1440  if (itCqi == m_ueCqi.end())
1441  {
1442  // no cqi info about this UE
1443  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1444  NS_LOG_INFO(this << " UE does not have ULCQI " << (*it).first);
1445  }
1446  else
1447  {
1448  // take the lowest CQI value (worst RB)
1449  NS_ABORT_MSG_IF((*itCqi).second.empty(),
1450  "CQI of RNTI = " << (*it).first << " has expired");
1451  double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1452  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1453  {
1454  if ((*itCqi).second.at(i) < minSinr)
1455  {
1456  minSinr = (*itCqi).second.at(i);
1457  }
1458  }
1459  // translate SINR -> cqi: WILD ACK: same as DL
1460  double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1461 
1462  cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1463  if (cqi == 0)
1464  {
1465  it++;
1466  if (it == m_ceBsrRxed.end())
1467  {
1468  // restart from the first
1469  it = m_ceBsrRxed.begin();
1470  }
1471  NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1472  // remove UE from allocation map
1473  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1474  {
1475  rbgAllocationMap.at(i) = 0;
1476  }
1477  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1478  }
1479  uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1480  }
1481  uldci.m_tbSize =
1482  (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8); // MCS 0 -> UL-AMC TBD
1483 
1484  UpdateUlRlcBufferInfo(uldci.m_rnti, uldci.m_tbSize);
1485  uldci.m_ndi = 1;
1486  uldci.m_cceIndex = 0;
1487  uldci.m_aggrLevel = 1;
1488  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1489  uldci.m_hopping = false;
1490  uldci.m_n2Dmrs = 0;
1491  uldci.m_tpc = 0; // no power control
1492  uldci.m_cqiRequest = false; // only period CQI at this stage
1493  uldci.m_ulIndex = 0; // TDD parameter
1494  uldci.m_dai = 1; // TDD parameter
1495  uldci.m_freqHopping = 0;
1496  uldci.m_pdcchPowerOffset = 0; // not used
1497  ret.m_dciList.push_back(uldci);
1498  // store DCI for HARQ_PERIOD
1499  uint8_t harqId = 0;
1500  if (m_harqOn == true)
1501  {
1502  std::map<uint16_t, uint8_t>::iterator itProcId;
1503  itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1504  if (itProcId == m_ulHarqCurrentProcessId.end())
1505  {
1506  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1507  }
1508  harqId = (*itProcId).second;
1509  std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
1510  m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1511  if (itDci == m_ulHarqProcessesDciBuffer.end())
1512  {
1513  NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1514  << uldci.m_rnti);
1515  }
1516  (*itDci).second.at(harqId) = uldci;
1517  // Update HARQ process status (RV 0)
1518  std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1519  m_ulHarqProcessesStatus.find(uldci.m_rnti);
1520  if (itStat == m_ulHarqProcessesStatus.end())
1521  {
1522  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1523  << uldci.m_rnti);
1524  }
1525  (*itStat).second.at(harqId) = 0;
1526  }
1527 
1528  NS_LOG_INFO(this << " UL Allocation - UE " << (*it).first << " startPRB "
1529  << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1530  << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1531  << uldci.m_tbSize << " harqId " << (uint16_t)harqId);
1532 
1533  it++;
1534  if (it == m_ceBsrRxed.end())
1535  {
1536  // restart from the first
1537  it = m_ceBsrRxed.begin();
1538  }
1539  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1540  {
1541  // Stop allocation: no more PRBs
1542  m_nextRntiUl = (*it).first;
1543  break;
1544  }
1545  } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1546 
1547  m_allocationMaps.insert(
1548  std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1549 
1551 }
1552 
1553 void
1556 {
1557  NS_LOG_FUNCTION(this);
1558 }
1559 
1560 void
1563 {
1564  NS_LOG_FUNCTION(this);
1565 }
1566 
1567 void
1570 {
1571  NS_LOG_FUNCTION(this);
1572 
1573  std::map<uint16_t, uint32_t>::iterator it;
1574 
1575  for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1576  {
1577  if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1578  {
1579  // buffer status report
1580  // note that this scheduler does not differentiate the
1581  // allocation according to which LCGs have more/less bytes
1582  // to send.
1583  // Hence the BSR of different LCGs are just summed up to get
1584  // a total queue size that is used for allocation purposes.
1585 
1586  uint32_t buffer = 0;
1587  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1588  {
1589  uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1590  buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1591  }
1592 
1593  uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1594  it = m_ceBsrRxed.find(rnti);
1595  if (it == m_ceBsrRxed.end())
1596  {
1597  // create the new entry
1598  m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1599  NS_LOG_INFO(this << " Insert RNTI " << rnti << " queue " << buffer);
1600  }
1601  else
1602  {
1603  // update the buffer size value
1604  (*it).second = buffer;
1605  NS_LOG_INFO(this << " Update RNTI " << rnti << " queue " << buffer);
1606  }
1607  }
1608  }
1609 }
1610 
1611 void
1614 {
1615  NS_LOG_FUNCTION(this);
1616 
1617  switch (m_ulCqiFilter)
1618  {
1620  // filter all the CQIs that are not SRS based
1621  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1622  {
1623  return;
1624  }
1625  }
1626  break;
1628  // filter all the CQIs that are not SRS based
1629  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1630  {
1631  return;
1632  }
1633  }
1634  break;
1635  default:
1636  NS_FATAL_ERROR("Unknown UL CQI type");
1637  }
1638  switch (params.m_ulCqi.m_type)
1639  {
1640  case UlCqi_s::PUSCH: {
1641  std::map<uint16_t, std::vector<uint16_t>>::iterator itMap;
1642  std::map<uint16_t, std::vector<double>>::iterator itCqi;
1643  itMap = m_allocationMaps.find(params.m_sfnSf);
1644  if (itMap == m_allocationMaps.end())
1645  {
1646  NS_LOG_INFO(this << " Does not find info on allocation, size : "
1647  << m_allocationMaps.size());
1648  return;
1649  }
1650  for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1651  {
1652  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1653  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1654  itCqi = m_ueCqi.find((*itMap).second.at(i));
1655  if (itCqi == m_ueCqi.end())
1656  {
1657  // create a new entry
1658  std::vector<double> newCqi;
1659  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1660  {
1661  if (i == j)
1662  {
1663  newCqi.push_back(sinr);
1664  }
1665  else
1666  {
1667  // initialize with NO_SINR value.
1668  newCqi.push_back(30.0);
1669  }
1670  }
1671  m_ueCqi.insert(
1672  std::pair<uint16_t, std::vector<double>>((*itMap).second.at(i), newCqi));
1673  // generate correspondent timer
1674  m_ueCqiTimers.insert(
1675  std::pair<uint16_t, uint32_t>((*itMap).second.at(i), m_cqiTimersThreshold));
1676  }
1677  else
1678  {
1679  // update the value
1680  (*itCqi).second.at(i) = sinr;
1681  // update correspondent timer
1682  std::map<uint16_t, uint32_t>::iterator itTimers;
1683  itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1684  (*itTimers).second = m_cqiTimersThreshold;
1685  }
1686  }
1687  // remove obsolete info on allocation
1688  m_allocationMaps.erase(itMap);
1689  }
1690  break;
1691  case UlCqi_s::SRS: {
1692  // get the RNTI from vendor specific parameters
1693  uint16_t rnti = 0;
1694  NS_ASSERT(!params.m_vendorSpecificList.empty());
1695  for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1696  {
1697  if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1698  {
1699  Ptr<SrsCqiRntiVsp> vsp =
1700  DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1701  rnti = vsp->GetRnti();
1702  }
1703  }
1704  std::map<uint16_t, std::vector<double>>::iterator itCqi;
1705  itCqi = m_ueCqi.find(rnti);
1706  if (itCqi == m_ueCqi.end())
1707  {
1708  // create a new entry
1709  std::vector<double> newCqi;
1710  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1711  {
1712  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1713  newCqi.push_back(sinr);
1714  NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1715  << sinr);
1716  }
1717  m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1718  // generate correspondent timer
1719  m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1720  }
1721  else
1722  {
1723  // update the values
1724  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1725  {
1726  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1727  (*itCqi).second.at(j) = sinr;
1728  NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1729  << sinr);
1730  }
1731  // update correspondent timer
1732  std::map<uint16_t, uint32_t>::iterator itTimers;
1733  itTimers = m_ueCqiTimers.find(rnti);
1734  (*itTimers).second = m_cqiTimersThreshold;
1735  }
1736  }
1737  break;
1738  case UlCqi_s::PUCCH_1:
1739  case UlCqi_s::PUCCH_2:
1740  case UlCqi_s::PRACH: {
1741  NS_FATAL_ERROR("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1742  }
1743  break;
1744  default:
1745  NS_FATAL_ERROR("Unknown type of UL-CQI");
1746  }
1747 }
1748 
1749 void
1751 {
1752  NS_LOG_FUNCTION(this << m_p10CqiTimers.size());
1753  // refresh DL CQI P01 Map
1754  std::map<uint16_t, uint32_t>::iterator itP10 = m_p10CqiTimers.begin();
1755  while (itP10 != m_p10CqiTimers.end())
1756  {
1757  NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1758  << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1759  if ((*itP10).second == 0)
1760  {
1761  // delete correspondent entries
1762  std::map<uint16_t, uint8_t>::iterator itMap = m_p10CqiRxed.find((*itP10).first);
1763  NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1764  " Does not find CQI report for user " << (*itP10).first);
1765  NS_LOG_INFO(this << " P10-CQI exired for user " << (*itP10).first);
1766  m_p10CqiRxed.erase(itMap);
1767  std::map<uint16_t, uint32_t>::iterator temp = itP10;
1768  itP10++;
1769  m_p10CqiTimers.erase(temp);
1770  }
1771  else
1772  {
1773  (*itP10).second--;
1774  itP10++;
1775  }
1776  }
1777 }
1778 
1779 void
1781 {
1782  // refresh UL CQI Map
1783  std::map<uint16_t, uint32_t>::iterator itUl = m_ueCqiTimers.begin();
1784  while (itUl != m_ueCqiTimers.end())
1785  {
1786  NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1787  << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1788  if ((*itUl).second == 0)
1789  {
1790  // delete correspondent entries
1791  std::map<uint16_t, std::vector<double>>::iterator itMap = m_ueCqi.find((*itUl).first);
1792  NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1793  " Does not find CQI report for user " << (*itUl).first);
1794  NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1795  (*itMap).second.clear();
1796  m_ueCqi.erase(itMap);
1797  std::map<uint16_t, uint32_t>::iterator temp = itUl;
1798  itUl++;
1799  m_ueCqiTimers.erase(temp);
1800  }
1801  else
1802  {
1803  (*itUl).second--;
1804  itUl++;
1805  }
1806  }
1807 }
1808 
1809 void
1810 RrFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1811 {
1812  NS_LOG_FUNCTION(this);
1813  std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1814  for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
1815  {
1816  if (((*it).m_rnti == rnti) && ((*it).m_logicalChannelIdentity == lcid))
1817  {
1818  NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1819  << (*it).m_rlcTransmissionQueueSize << " retxqueue "
1820  << (*it).m_rlcRetransmissionQueueSize << " status "
1821  << (*it).m_rlcStatusPduSize << " decrease " << size);
1822  // Update queues: RLC tx order Status, ReTx, Tx
1823  // Update status queue
1824  if (((*it).m_rlcStatusPduSize > 0) && (size >= (*it).m_rlcStatusPduSize))
1825  {
1826  (*it).m_rlcStatusPduSize = 0;
1827  }
1828  else if (((*it).m_rlcRetransmissionQueueSize > 0) &&
1829  (size >= (*it).m_rlcRetransmissionQueueSize))
1830  {
1831  (*it).m_rlcRetransmissionQueueSize = 0;
1832  }
1833  else if ((*it).m_rlcTransmissionQueueSize > 0)
1834  {
1835  uint32_t rlcOverhead;
1836  if (lcid == 1)
1837  {
1838  // for SRB1 (using RLC AM) it's better to
1839  // overestimate RLC overhead rather than
1840  // underestimate it and risk unneeded
1841  // segmentation which increases delay
1842  rlcOverhead = 4;
1843  }
1844  else
1845  {
1846  // minimum RLC overhead due to header
1847  rlcOverhead = 2;
1848  }
1849  // update transmission queue
1850  if ((*it).m_rlcTransmissionQueueSize <= size - rlcOverhead)
1851  {
1852  (*it).m_rlcTransmissionQueueSize = 0;
1853  }
1854  else
1855  {
1856  (*it).m_rlcTransmissionQueueSize -= size - rlcOverhead;
1857  }
1858  }
1859  return;
1860  }
1861  }
1862 }
1863 
1864 void
1865 RrFfMacScheduler::UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
1866 {
1867  size = size - 2; // remove the minimum RLC overhead
1868  std::map<uint16_t, uint32_t>::iterator it = m_ceBsrRxed.find(rnti);
1869  if (it != m_ceBsrRxed.end())
1870  {
1871  NS_LOG_INFO(this << " Update RLC BSR UE " << rnti << " size " << size << " BSR "
1872  << (*it).second);
1873  if ((*it).second >= size)
1874  {
1875  (*it).second -= size;
1876  }
1877  else
1878  {
1879  (*it).second = 0;
1880  }
1881  }
1882  else
1883  {
1884  NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1885  }
1886 }
1887 
1888 void
1890 {
1891  NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1893  params.m_rnti = rnti;
1894  params.m_transmissionMode = txMode;
1896 }
1897 
1898 } // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:41
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:141
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
Implements the SCHED SAP and CSCHED SAP for a Round Robin scheduler.
friend class MemberCschedSapProvider< RrFfMacScheduler >
allow MemberCschedSapProvider<RrFfMacScheduler> class friend access
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
friend class MemberSchedSapProvider< RrFfMacScheduler >
allow MemberSchedSapProvider<RrFfMacScheduler> class friend access
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
~RrFfMacScheduler() override
Destructor.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
LteFfrSapUser * GetLteFfrSapUser() override
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::list< FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's RLC info.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
uint16_t m_nextRntiDl
RNTI of the next user to be served next scheduling in DL.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
static bool SortRlcBufferReq(FfMacSchedSapProvider::SchedDlRlcBufferReqParameters i, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters j)
Sort RLC buffer request function.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SRS info request.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
void DoDispose() override
Destructor implementation.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:60
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
Hold an unsigned integer type.
Definition: uinteger.h:45
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
See section 4.3.8 builDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.