Resumo

Atualmente, a execução de algoritmos de aprendizado de máquina é tipicamente em lote, offline e centralizada. O gerenciamento de redes e seus serviços requer execução em massa de dados distribuídos e em tempo real. Em diversas situações, a validade tempo real dos dados gerados é limitada, demandando a redução da latêcia na comunicação e processamento. Ademais, a transmissão de dados em ambiente distribuído está sujeita qualidade dos canais de comunicação, ao congestionamento da rede e energia disponível nos dispositivos móveis. Tais restrições demandam soluções basedas em Inteligêcia Artificial Distribuída (DAI), o que vai muito além da execução tradicional de algoritmos de aprendizado de máquina. Uma forte restrição adicional decorre da adoção da nova Lei Geral de Proteção de Dados - LGPD. A restrição de privacidade de dados é endereçada pela técnica de aprendizado federado. O grande número de dispositivos conectados Internet das Coisas exige a manipulação de um alto volume de dados gerados por milhares de sensores, requerendo soluções que atendam requisitos de escalabilidade, distribuição geográfica, mobilidade, heterogeneidade, segurança e privacidade.

A alocação adaptativa e a orquestração de recursos são desafios a serem superados em redes IoT de larga escala com milhares de sensores. A integração de IoT e IA possibilita a construção de diversos sistemas inteligentes, tais como os das cidades inteligentes, sistemas inteligentes de saúde e de energia. Além dos desafios típicos de IoT, soluçõess devem considerar a variação dinâmica de diferentes demandas. A predição de demanda é crucial para sistemas adaptativos. DAI desempenhar um papel crítico na realizaçãoo de redes 6G e suas aplicações. Existem diversas maneiras pelas quais a IA pode ser usado em 6G, incluindo o uso convencional de IA para analítica prescritiva, preditiva, diagnótica e descritiva. A análise prescritiva pode ser usada para tomar decisões ou previsões relacionadas IA de borda, como posicionamento de cache, migração de modelos de IA, escalonamento de fatias de rede dinâmica e adaptativamente e suas cadeias de funções de serviço, bem como alocação automática de recursos (por exemplo, espectro, nuvem e backhaul).

A análise preditiva ajuda a prever o futuro a partir de dados adquiridos em tempo real para eventos como disponibilidade de recursos, comportamento do usuário, localização do usuário e padrões de tráfego, para alterar a rede proativamente. Ações proativas podem ajustar a alocação de recursos, instanciação de soluções de segurança, pré-migração de serviços na borda. A análise de diagnóstico refere-se a detecção de falhas na rede e anomalias. O presente projeto de pesquisa pretende investigar soluções inteligentes para redes de comunicação e IoT baseada em DAI, soluções para a alocação e orquestração de recursos distribuídos, para o gerenciamento da infraestrutura e a provisão de serviços inteligentes.